Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Akowuah GA, Zhari I
    Pharmazie, 2008 Nov;63(11):788-90.
    PMID: 19069237
    A simple high-performance liquid chromatography (HPLC) method to determine the content of betulinic acid (BA) in rat plasma collected at different times (0-8 h) after oral administration of Orthosiphon stamineus leaf extract was developed. The features of the assay include protein precipitation using acetonitrile and isocratic elution using reverse phase C-18 column with ultraviolet (UV) detection. The recovery of BA from plasma varied from 98.4 to 102.5%. The R.S.D of intra- and inter-day precision from rat plasma ranged from 4.2 to 9.8%. The maximum concentration of BA in the plasma was 1.2 +/- 0.3 microg/ml at 1 h after oral administration of the extract.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  2. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  3. Al-Qaim FF, Abdullah MP, Othman MR, Latip J, Zakaria Z
    J Chromatogr A, 2014 Jun 6;1345:139-53.
    PMID: 24768127 DOI: 10.1016/j.chroma.2014.04.025
    An analytical method that facilitated the analysis of 11 pharmaceuticals residue (caffeine, prazosin, enalapril, carbamazepine, nifedipine, levonorgestrel, simvastatin, hydrochlorothiazide, gliclazide, diclofenac-Na, and mefenamic acid) with a single pre-treatment protocol was developed. The proposed method included an isolation and concentration procedure using solid phase extraction (Oasis HLB), a separation step using high-performance liquid chromatography, and a detection procedure that applies time-of-flight mass spectrometry. The method was validated for drinking water (DW), surface water (SW), sewage treatment plant (STP) influent and effluent, and hospital (HSP) influent and effluent. The limits of quantification were as low as 0.4, 1.6, 5, 3, 2.2 and 11 ng/L in DW, SW, HSP influent and effluent, STP effluent, and STP influent, respectively. On average, good recoveries higher than 75% were obtained for most of the target analytes in all matrices. Matrix effect was evaluated for all samples matrices. The proposed method successfully determined and quantified the target compounds in raw and treated wastewater of four STPs and three hospitals in Malaysia, as well as in two SW sites. The results showed that a number of the studied compounds pose moderate to high persistency in sewage treatment effluents as well as in the recipient rivers, namely; caffeine, simvastatin, and hydrochlorothiazide. Ten out of 11 compounds were detected and quantified in 13 sampling points. Caffeine was detected with the highest level, with concentrations reaching up to 9099 ng/L in STP influent.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization/methods*
  4. Al-Qaim FF, Mussa ZH, Yuzir A
    Anal Bioanal Chem, 2018 Aug;410(20):4829-4846.
    PMID: 29806068 DOI: 10.1007/s00216-018-1120-9
    The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization/instrumentation; Spectrometry, Mass, Electrospray Ionization/methods*
  5. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization*
  6. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  7. Nasaruddin RR, Yao Q, Chen T, Hülsey MJ, Yan N, Xie J
    Nanoscale, 2018 Dec 04.
    PMID: 30512030 DOI: 10.1039/c8nr07197g
    Quasi-homogeneous ligand-protected gold nanoclusters (Au NCs) with atomic precision and well-defined structure offer great opportunity for exploring the catalytic nature of nanogold catalysts at a molecular level. Herein, using real-time electrospray ionization mass spectrometry (ESI-MS), we have successfully identified the desorption and re-adsorption of p-mercaptobenzoic acid (p-MBA) ligands from Au25(p-MBA)18 NC catalysts during the hydrogenation of 4-nitrophenol in solution. This ligand dynamic (desorption and re-adsorption) would initiate structural transformation of Au25(p-MBA)18 NC catalysts during the reaction, forming a mixture of smaller Au NCs (Au23(p-MBA)16 as the major species) at the beginning of catalytic reaction, which could further be transformed into larger Au NCs (Au26(p-MBA)19 as the major species). The adsorption of hydrides (from NaBH4) is identified as the determining factor that could induce the ligand dynamic and structural transformation of NC catalysts. This study provides fundamental insights into the catalytic nature of Au NCs, including catalytic mechanism, active species and stability of Au NC catalysts during a catalytic reaction.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  8. Sultan S, Noor MZ, Anouar el H, Shah SA, Salim F, Rahim R, et al.
    Molecules, 2014 Sep 03;19(9):13775-87.
    PMID: 25255760 DOI: 10.3390/molecules190913775
    The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6-31+G (d,p) level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  9. Wong KC, Hamid A, Eldeen IM, Asmawi MZ, Baharuddin S, Abdillahi HS, et al.
    Nat Prod Res, 2012;26(9):850-8.
    PMID: 21999629 DOI: 10.1080/14786419.2010.551770
    A new sesquiterpenoid, 1α,4β,7β-eudesmanetriol (1), was isolated together with the known compounds 1β,4β,7β-eudesmanetriol (2) and oplopanone (3) from the rhizomes of Homalomena sagittifolia. The structures of these compounds were determined by extensive spectral analyses. The compounds 1 and 2 inhibited growth of Pseudomonas stutzeri with a MIC value of 117 µM when evaluated for antibacterial activity using the minimum concentration assay. Both these compounds showed remarkable activities against acetylcholinesterase enzyme with IC(50) values ranging between 25 and 26 µM. The isolation of these sesquiterpenoids and their biological activities observed in this study support the reported traditional uses of H. sagittifolia for the treatment of microbial related diseases and central nervous system disorders.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  10. Tani K, Kamada T, Phan CS, Vairappan CS
    Nat Prod Res, 2019 Dec;33(23):3343-3349.
    PMID: 29772929 DOI: 10.1080/14786419.2018.1475387
    Three new cembrane diterpenes, nephthecrassocolides A-B (1-2) and 6-acetoxy nephthenol acetate (3) along with three known compounds, 6-acetoxy-7,8-epoxy nephthenol acetate (4), epoxy nephthenol acetate (5) and nephthenol (6) were isolated from one population of Nephthea sp. Their structures were elucidated based on spectroscopic data analysis and the antifungal activities of compounds 1-6 were evaluated.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  11. Ng SY, Kamada T, Suleiman M, Vairappan CS
    Nat Prod Res, 2018 Aug;32(15):1832-1837.
    PMID: 29156972 DOI: 10.1080/14786419.2017.1405409
    The Bornean liverwort Gottschelia schizopleura was investigated phytochemically for the first time. Two new and four previously known clerodane-type diterpenoids were isolated from the MeOH extract of G. schizopleura through a series of chromatographic techniques. The structures of the new metabolites were established by analyses of their spectroscopic data (1D NMR, 2D NMR, HRESIMS and IR). All the isolated compounds 1-6 were tested against human promyelocytic leukaemia (HL-60), human colon adenocarcinoma (HT-29) and Mus musculus skin melanoma (B16-F10). Compound 1 and 2 showed active inhibition against HL-60 and B16-F10 cells.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  12. Phan CS, Vairappan CS
    Nat Prod Res, 2017 Apr;31(7):742-748.
    PMID: 27750446 DOI: 10.1080/14786419.2016.1241997
    Four new bicyclogermacrenes, capgermacrenes D (1) E (2) F (3) and G (4) were isolated from a population of Bornean soft coral Capnella imbricata. The structures of these metabolites were elucidated based on their nuclear magnetic resonance and high-resolution electrospray ionisation mass spectrometry spectral data. These compounds showed bacteriastatic and bacteriacidal activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  13. Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S
    J Chromatogr A, 2010 Oct 29;1217(44):6791-806.
    PMID: 20851398 DOI: 10.1016/j.chroma.2010.08.033
    Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm(3), 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC-ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization/methods
  14. Choo WS, Birch EJ, Stewart I
    Lipids, 2009 Sep;44(9):807-15.
    PMID: 19727883 DOI: 10.1007/s11745-009-3334-2
    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  15. Gam LH, Leow CH, Man CN, Gooi BH, Singh M
    World J Gastroenterol, 2006 Aug 21;12(31):4973-80.
    PMID: 16937492
    AIM: To identify and analyze the differentially expressed proteins in normal and cancerous tissues of four patients suffering from colon cancer.

    METHODS: Colon tissues (normal and cancerous) were homogenized and the proteins were extracted using three protein extraction buffers. The extraction buffers were used in an orderly sequence of increasing extraction strength for proteins with hydrophobic properties. The protein extracts were separated using the SDS-PAGE method and the images were captured and analyzed using Quantity One software. The target protein bands were subjected to in-gel digestion with trypsin and finally analyzed using an ESI-ion trap mass spectrometer.

    RESULTS: A total of 50 differentially expressed proteins in colonic cancerous and normal tissues were identified.

    CONCLUSION: Many of the identified proteins have been reported to be involved in the progression of similar or other types of cancers. However, some of the identified proteins have not been reported before. In addition, a number of hypothetical proteins were also identified.

    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  16. Malek SN, Phang CW, Ibrahim H, Norhanom AW, Sim KS
    Molecules, 2011 Jan 14;16(1):583-9.
    PMID: 21240148 DOI: 10.3390/molecules16010583
    The methanol and fractionated extracts (hexane, ethyl acetate and water) of Alpinia mutica (Zingiberaceae) rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5) using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC₅₀ values of 9.4, 19.7 and 19.8 µg/mL, respectively). Flavokawin B (1), 5,6-dehydrokawain (2), pinostrobin chalcone (3) and alpinetin (4), isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3) and alpinetin (4) were isolated from this plant for the first time. Pinostrobin chalcone (3) displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC₅₀ values of 6.2, 7.3 and 7.7 µg/mL, respectively). This is the first report of the cytotoxic activity of Alpinia mutica.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  17. Suthar SK, Boon HL, Sharma M
    Eur J Med Chem, 2014 Mar 3;74:135-44.
    PMID: 24457265 DOI: 10.1016/j.ejmech.2013.12.052
    The C-3, C-17 and C-22 congeners of pentacyclic triterpenoids reduced lantadene A (3), B (4) and 22β-hydroxyoleanolic acid (5) were synthesized and were tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead congeners 12 and 13 showed IC50 of 0.56 and 0.42 μmol, respectively against TNF-α induced activation of NF-κB. The congeners 12 and 13 exhibited inhibition of IKKβ in a single-digit micromolar dose and at the same time, 12 and 13 showed marked cytotoxicity against A549 lung cancer cells with IC50 of 0.12 and 0.08 μmol, respectively. The lead ester congeners were stable in the acidic pH, while hydrolyzed readily in the human blood plasma to release the active parent moieties.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  18. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  19. Abdullah R, Wesseling S, Spenkelink B, Louisse J, Punt A, Rietjens IMCM
    J Appl Toxicol, 2020 12;40(12):1647-1660.
    PMID: 33034907 DOI: 10.1002/jat.4024
    Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization
  20. Tahir NI, Shaari K, Abas F, Parveez GK, Ishak Z, Ramli US
    J Agric Food Chem, 2012 Nov 14;60(45):11201-10.
    PMID: 23116142 DOI: 10.1021/jf303267e
    The palm oil industry generates several byproducts, and more than half of the dry weight of the waste is of oil palm leaf whereby the tissue is underutilized. Recently, several research studies found promising potential of oil palm fronds as a source of nutraceutical due to its bioactive properties. However, the chemical composition of the tissue is still not deciphered. Using reversed-phase liquid chromatography (LC) electrospray mass spectrometry (ESI-MS), glycosylated apigenin and luteolin were separated and identified from oil palm (Elaeis guineensis Jacq.) leaf and structures of the constituents were elucidated by collision-induced dissociation (CID) tandem MS. From 28 derivatives of the flavones, 9 compounds were conjugated with hydroxymethylglutaric (HMG) acid. Improved knowledge on oil palm especially on bioactive component of the leaf tissue will allow correlation of its beneficial effects and further promotes efficient utilization of this agriculture byproduct.
    Matched MeSH terms: Spectrometry, Mass, Electrospray Ionization/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links