Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Amelia-Yap ZH, Low VL, Saeung A, Ng FL, Chen CD, Hassandarvish P, et al.
    Sci Rep, 2023 Jan 02;13(1):4.
    PMID: 36593229 DOI: 10.1038/s41598-022-25387-9
    A potentially novel actinobacterium isolated from forest soil, Streptomyces sp. KSF103 was evaluated for its insecticidal effect against several mosquito species namely Aedes aegypti, Aedes albopictus, Anopheles cracens and Culex quinquefasciatus. Mosquito larvae and adults were exposed to various concentrations of the ethyl acetate (EA) extract for 24 h. Considerable mortality was evident after the EA extract treatment for all four important vector mosquitoes. Larvicidal activity of the EA extract resulted in LC50 at 0.045 mg/mL and LC90 at 0.080 mg/mL for Ae. aegypti; LC50 at 0.060 mg/mL and LC90 at 0.247 mg/mL for Ae. albopictus; LC50 at 2.141 mg/mL and LC90 at 6.345 mg/mL for An. cracens; and LC50 at 0.272 mg/mL and LC90 at 0.980 mg/mL for Cx. quinquefasciatus. In adulticidal tests, the EA extract was the most toxic to Ae. albopictus adults (LD50 = 2.445 mg/mL; LD90 = 20.004 mg/mL), followed by An. cracens (LD50 = 5.121 mg/mL; LD90 = 147.854 mg/mL) and then Ae. aegypti (LD50 = 28.873 mg/mL; LD90 = 274.823 mg/mL). Additionally, the EA extract exhibited ovicidal activity against Ae. aegypti (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), Ae. albopictus (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), and An. cracens (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), evaluated up to 168 h post-treatment. It displayed no toxicity on the freshwater microalga Chlorella sp. Beijerinck UMACC 313, marine microalga Chlorella sp. Beijerinck UMACC 258 and the ant Odontoponera denticulata. In conclusion, the EA extract showed promising larvicidal, adulticidal and ovicidal activity against Ae. aegypti, Ae. albopictus, An. cracens, and Cx. quinquefasciatus (larvae only). The results suggest that the EA extract of Streptomyces sp. KSF103 has the potential to be used as an environmental-friendly approach in mosquito control. The current study would serve as an initial step toward complementing microbe-based bioinsecticides for synthetic insecticides against medically important mosquitoes.
    Matched MeSH terms: Streptomyces*
  2. Mechri S, Allala F, Bouacem K, Hasnaoui I, Gwaithan H, Chalbi TB, et al.
    Int J Biol Macromol, 2022 Dec 01;222(Pt A):1326-1342.
    PMID: 36242508 DOI: 10.1016/j.ijbiomac.2022.09.161
    We recently described the production of a detergent-biocompatible crude protease from Streptomyces mutabilis strain TN-X30. Here, we describe the purification, characterization, and immobilization of the serine alkaline protease (named SPSM), as well as the cloning, sequencing, and over-expression of its corresponding gene (spSM). Pure enzyme was obtained after ammonium sulphate precipitation followed by heat-treatment and Sephacryl® S-200 column purification. The sequence of the first 26 NH2-terminal residues of SPSM showed a high sequence identity to subtilisin-like serine proteases produced by actinobacteria. The spSM gene was heterologously expressed in Escherichia coli BL21(DE3)pLysS and E. coli BL21-AI™ strains using pTrc99A (rSPSM) and Gateway™ pDEST™ 17 [(His)6-tagged SPSM] vectors, respectively. Results obtained indicated that the (His)6-tagged SPSM showed the highest stability. The SPSM was immobilized using encapsulation and adsorption-encapsulation approaches and three different carriers. Features of SPSM in soluble and immobilized forms were analyzed by Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) mode, X-ray diffraction (XRD), zeta potential measurements, and field emission scanning electron microscopy (FE-SEM). The white clay and kaolin used in this study are eco-friendly binders to alginate-SPSM and show great potential for application of the immobilized SPSM in various industries. Molecular modeling and docking of N-succinyl-l-Phe-l-Ala-l-Ala-l-Phe-p-nitroanilide in the active site of SPSM revealed the involvement of 21 amino acids in substrate binding.
    Matched MeSH terms: Streptomyces*
  3. Polapally R, Mansani M, Rajkumar K, Burgula S, Hameeda B, Alhazmi A, et al.
    PLoS One, 2022;17(4):e0266676.
    PMID: 35468144 DOI: 10.1371/journal.pone.0266676
    The present study reveals the production of dark, extracellular melanin pigment (386 mg/L) on peptone yeast extract iron agar medium by Streptomyces puniceus RHPR9 using the gravimetric method. UV-Visible, Fourier Transform Infrared (FTIR), and Nuclear Magnetic Resonance (1H) (NMR) spectroscopy confirmed the presence of melanin. Extracted melanin showed antibacterial activity against human pathogens such as Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli except for Klebsiella pneumoniae. A potent free radical scavenging activity was observed at 100 μg/mL of melanin by the DPPH method with a concentration of 89.01±0.05% compared with ascorbic acid 96.16±0.01%. Antitumor activity of melanin was evaluated by MTT assay against HEK 293, HeLa, and SK-MEL-28 cell lines with IC50 values of 64.11±0.00, 14.43±0.02, and 13.31±0.01 μg/mL respectively. Melanin showed maximum anti-inflammatory activity with human red blood cells (hRBC) (78.63 ± 0.01%) and minimum hemolysis of 21.37±0.2%. The wound healing potential of the pigment was confirmed on HeLa cells, cell migration was calculated, and it was observed that cell migration efficiency decreased with an increase in the concentration of melanin. To our knowledge, this is the first evidence of melanin produced from S. puniceus RHPR9 that exhibited profound scavenging, anti-inflammatory and cytotoxic activities.
    Matched MeSH terms: Streptomyces
  4. Pusparajah P, Letchumanan V, Law JW, Ab Mutalib NS, Ong YS, Goh BH, et al.
    Int J Mol Sci, 2021 Aug 28;22(17).
    PMID: 34502269 DOI: 10.3390/ijms22179360
    Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
    Matched MeSH terms: Streptomyces/isolation & purification; Streptomyces/metabolism*; Streptomyces/chemistry*
  5. Shudirman S, Abang Kassim A, Shamsol Anuar NS, Utsumi M, Shimizu K, Muhammad Yuzir MA, et al.
    J Gen Appl Microbiol, 2021 Jul 31;67(3):92-99.
    PMID: 33642451 DOI: 10.2323/jgam.2020.08.001
    Musty odor production by actinomycetes is usually related to the presence of geosmin and 2-methylisoborneol (2-MIB), which are synthesized by enzymes encoded by the geoA and tpc genes, respectively. Streptomyces spp. strain S10, which was isolated from a water reservoir in Malaysia, has the ability to produce geosmin when cultivated in a basal salt (BS) solid medium, but no 2-MIB production occurred during growth in BS medium. Strain S10 could produce higher levels of geosmin when the phosphate concentration was limited to 0.05 mg/L, with a yield of 17.53 ± 3.12 ✕ 105 ng/L, compared with growth in BS medium. Interestingly, 2-MIB production was suddenly detected when the nitrate concentration was limited to 1.0 mg/L, with a yield of 1.4 ± 0.11 ✕ 105 ng/L. Therefore, it was concluded that phosphate- and nitrate-limiting conditions could induce the initial production of geosmin and 2-MIB by strain S10. Furthermore, a positive amplicon of geoA was detected in strain S10, but no tpc amplicon was detected by PCR analysis. Draft genome sequence analysis showed that one open reading frame (ORF) contained a conserved motif of geosmin synthase with 95% identity with geoA in Streptomyces coelicolor A3 (2). In the case of the tpc genes, it was found that one ORF showed 23% identity to the known tpc gene in S. coelicolor A3(2), but strain S10 lacked one motif in the N-terminus.
    Matched MeSH terms: Streptomyces/isolation & purification; Streptomyces/metabolism*
  6. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Streptomyces/metabolism*
  7. Goh LPW, Mahmud F, Lee PC
    Data Brief, 2021 Jun;36:107128.
    PMID: 34095378 DOI: 10.1016/j.dib.2021.107128
    The genome data of Streptomyces sp. FH025 comprised of 8,381,474 bp with a high GC content of 72.51%. The genome contains 7035 coding sequences spanning 1261 contigs. Streptomyces sp. FH025 contains 57 secondary metabolite gene clusters including polyketide synthase, nonribosomal polyketide synthase and other biosynthetic pathways such as amglyccycl, butyrolactone, terpenes, siderophores, lanthipeptide-class-iv, and ladderane. 16S rRNA analysis of Streptomyces sp. FH025 is similar to the Streptomyces genus. This whole genome project has been deposited at NCBI under the accession JAFLNG000000000.
    Matched MeSH terms: Streptomyces
  8. Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, et al.
    Appl Microbiol Biotechnol, 2021 Jun;105(12):4975-4986.
    PMID: 34146138 DOI: 10.1007/s00253-021-11226-w
    Marine microbes provide an important resource to discover new chemical compounds with biological activities beneficial to drug discovery. In our study, two new polyene macrolides, pyranpolyenolides A (1) and B (2), and one new natural cyclic peptide (9), together with two known polyenes (7 and 8) and three known cyclic peptides (10-12), were isolated from a culture of the marine Streptomyces sp. MS110128. In addition, four new polyene macrolides, pyranpolyenolides C-F (3-6), were identified as olefin geometric isomers that were most likely produced by photochemical conversion during the cultivation or isolation procedures. The pyranpolyenolides are 32-membered macrolides endowed with a conjugated tetraene and several pairs of 1,3-dihydroxyl groups. Pyranpolyenolides that contain a hydropyran group have not been previously reported. Four cyclic peptides (9-12) showed significant activities against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant S. aureus with supporting MIC values ranging from 0.025 to 1.25 μg/mL. These cyclic peptides containing piperazic moieties showed moderate activities with MIC values of 12.5 μg/mL against Bacille Calmette Guerin (BCG), an attenuated form of the bovine. Additionally, cyclic peptide 12 showed moderate antifungal activity against Candida albicans with an MIC value of 12.5 μg/mL. KEY POINTS: • Discovery of new polyenes and cyclic peptides from a marine-derived Actinomycete. • Cyclic peptides containing piperazic moieties exhibited good antibacterial activity.
    Matched MeSH terms: Streptomyces*
  9. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
    Matched MeSH terms: Streptomyces/chemistry*
  10. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Streptomyces
  11. Ahmad SJ, Zin NM
    Data Brief, 2021 Apr;35:106768.
    PMID: 33604422 DOI: 10.1016/j.dib.2021.106768
    The data genome sequence of SUK 48 consists of 8,341,706 bp, comprising of one contig with a high G + C content of 72.33%. The genome sequence encodes for 67 tRNAs and 21 rRNAs in one contig. SUK48 was found to have low similarities with other Streptomyces sp. (81-93% ANI indices) indicating that the isolated strain has a unique genome property and is presumably a novel species. This genome includes 34 genetic clusters responsible for the synthesis of secondary metabolites, including two polyketide synthase (PKS) clusters; one PKS type II cluster gene, one PKS gene cluster type III, five NRPS genetic clusters, and five PKS/NRPS hybrid clusters.
    Matched MeSH terms: Streptomyces
  12. Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, et al.
    Microorganisms, 2021 Mar 26;9(4).
    PMID: 33810209 DOI: 10.3390/microorganisms9040682
    As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
    Matched MeSH terms: Streptomyces
  13. Lavin P, Henríquez-Castillo C, Yong ST, Valenzuela-Heredia D, Oses R, Frez K, et al.
    Microbiol Resour Announc, 2021 Feb 04;10(5).
    PMID: 33541887 DOI: 10.1128/MRA.01453-20
    The draft genome sequence of Streptomyces fildesensis strain INACH3013, a psychrotrophic bacterium isolated from Northwest Antarctic soil, was reported. The genome sequence totaling 9,306,785 bp resulted from 122 contigs characterized by a GC content of 70.55%.
    Matched MeSH terms: Streptomyces
  14. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

    Matched MeSH terms: Streptomyces
  15. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al.
    Molecules, 2020 Nov 17;25(22).
    PMID: 33212836 DOI: 10.3390/molecules25225365
    Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
    Matched MeSH terms: Streptomyces/chemistry*
  16. Zin NM, Al-Shaibani MM, Jalil J, Sukri A, Al-Maleki AR, Sidik NM
    Arch Microbiol, 2020 Oct;202(8):2083-2092.
    PMID: 32494868 DOI: 10.1007/s00203-020-01896-x
    Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
    Matched MeSH terms: Streptomyces/chemistry
  17. Mangzira Kemung H, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756432 DOI: 10.3390/molecules25153545
    There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
    Matched MeSH terms: Streptomyces/classification; Streptomyces/isolation & purification; Streptomyces/chemistry*
  18. Madhaiyan M, Saravanan VS, See-Too WS
    Int J Syst Evol Microbiol, 2020 Jun;70(6):3924-3929.
    PMID: 32441614 DOI: 10.1099/ijsem.0.004217
    Phylogenetic analysis based on 16S rRNA gene sequences of the genus Streptomyces showed the presence of six distinguishable clusters, with 100 % sequence similarity values among strains in each cluster; thus they shared almost the same evolutionary distance. This result corroborated well with the outcome of core gene (orthologous gene clusters) based genome phylogeny analysis of 190 genomes including the Streptomyces species in those six clusters. These preeminent results led to an investigation of genome-based indices such as digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) for the strains in those six clusters. Certain strains recorded genomic indices well above the threshold values (70 %, 95-96 % and >95 % for dDDH, ANI and AAI, respectively) determined for species affiliation, suggesting only one type strain belongs to described species and the other(s) may need to be reduced in taxa to a later heterotypic synonym. To conclude, the results of comprehensive analyses based on phylogenetic and genomic indices suggest that the following six reclassifications are proposed: Streptomyces flavovariabilis as a later heterotypic synonym of Streptomyces variegatus; Streptomyces griseofuscus as a later heterotypic synonym of Streptomyces murinus; Streptomyces kasugaensis as a later heterotypic synonym of Streptomyces celluloflavus; Streptomyces luridiscabiei as a later heterotypic synonym of Streptomyces fulvissimus; Streptomyces pharetrae as a later heterotypic synonym of Streptomyces glaucescens; and Streptomyces stelliscabiei as a later heterotypic synonym of Streptomyces bottropensis.
    Matched MeSH terms: Streptomyces/classification*
  19. Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, et al.
    Sci Rep, 2020 05 08;10(1):7813.
    PMID: 32385385 DOI: 10.1038/s41598-020-64817-4
    The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
    Matched MeSH terms: Streptomyces/enzymology*; Streptomyces/genetics
  20. Danial AM, Medina A, Sulyok M, Magan N
    Mycotoxin Res, 2020 May;36(2):225-234.
    PMID: 31960351 DOI: 10.1007/s12550-020-00388-7
    The objectives of this study were to determine the efficacy of metabolites of a Streptomyces strain AS1 on (a) spore germination, (b) mycelial growth, (c) control of mycotoxins produced by Penicillium verrucosum (ochratoxin A, OTA), Fusarium verticillioides (fumonisins, FUMs) and Aspergillus fumigatus (gliotoxin) and (d) identify the predominant metabolites involved in control. Initial screening showed that the Streptomyces AS1 strain was able to inhibit the mycelial growth of the three species at a distance, due to the release of secondary metabolites. A macroscopic screening system showed that the overall Index of Dominance against all three toxigenic fungi was inhibition at a distance. Subsequent studies showed that the metabolite mixture from the Streptomyces AS1 strain was very effective at inhibiting conidial germination of P. verrucosum, but less so against conidia of A. fumigatus and F. verticillioides. The efficacy was confirmed in studies on a conducive semi-solid YES medium in BioScreen C assays. Using the BioScreen C and the criteria of Time to Detection (TTD) at an OD = 0.1 showed good efficacy against P. verrucosum when treated with the Streptomyces AS1 extract at 0.95 and 0.99 water activity (aw) when compared to the other two species tested, indicating good efficacy. The effective dose for 50% control of growth (ED50) at 0.95 and 0.99 aw were approx. 0.005 ng/ml and 0.15 μg/ml, respectively, with the minimum inhibitory concentration (MIC) at both aw levels requiring > 40 μg/ml. In addition, OTA production was completely inhibited by 2.5 μg/ml AS1 extract at both aw levels in the in vitro assays. Ten metabolites were identified with four of these being predominant in concentrations > 2 μg/g dry weight biomass. These were identified as valinomycin, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val) and brevianamide F.
    Matched MeSH terms: Streptomyces/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links