Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Agi A, Junin R, Alqatta AYM, Gbadamosi A, Yahya A, Abbas A
    Ultrason Sonochem, 2019 Mar;51:214-222.
    PMID: 30401623 DOI: 10.1016/j.ultsonch.2018.10.023
    Ultrafiltration has been proven to be very effective in the treatment of oil-in-water emulsions, since no chemical additives are required. However, ultrafiltration has its limitations, the main limits are concentration polarization resulting to permeate flux decline with time. Adsorption, accumulation of oil and particles on the membrane surface which causes fouling of the membrane. Studies have shown that the ultrasonic is effective in cleaning of fouled membrane and enhancing membrane filtration performance. But the effectiveness also, depends on the selection of appropriate membrane material, membrane geometry, ultrasonic module design, operational and processing condition. In this study, a hollow and flat-sheet polyurethane (PU) membranes synthesized with different additives and solvent were used and their performance evaluated with oil-in-water emulsion. The steady-state permeate flux and the rejection of oil in percentage (%) at two different modes were determined. A dry/wet spinning technique was used to fabricate the flat-sheet and hollow fibre membrane (HFMs) using Polyethersulfone (PES) polymer base, Polyvinylpyrrolidone (PVP) additive and N, N-Dimethylacetamide (DMAc) solvent. Ultrasonic assisted cross-flow ultrafiltration module was built to avoid loss of ultrasonic to the surrounding. The polyurethane (PU) was synthesized by polymerization and sulphonation to have an anionic group (-OH; -COOH; and -SO3H) on the membrane surface. Changes in morphological properties of the membrane had a significant effect on the permeate flow rate and oil removal. Generation of cavitation and Brownian motion by the ultrasonic were the dominant mechanisms responsible for ultrafiltration by cracking the cake layers and reducing concentration polarization at the membrane surface. The percentage of oil after ultrafiltration process with ultrasonic is about 90% compared to 49% without ultrasonic. Ultrasonic is effective in enhancing the membrane permeate flux and controlling membrane fouling.
    Matched MeSH terms: Ultrafiltration
  2. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Ultrafiltration/instrumentation
  3. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2017 May;75(10):2422-2433.
    PMID: 28541950 DOI: 10.2166/wst.2017.122
    Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
    Matched MeSH terms: Ultrafiltration
  4. Yogarathinam LT, Velswamy K, Gangasalam A, Ismail AF, Goh PS, Subramaniam MN, et al.
    Chemosphere, 2022 Jan;286(Pt 3):131822.
    PMID: 34416593 DOI: 10.1016/j.chemosphere.2021.131822
    In this study, fouling mechanism and modelling analysis of synthetic lignocellulose biomass and agricultural palm oil effluent was studied using polyethersulfone (PES) ultrafiltration (UF) 10 kDa membrane. The impact of process variables (transmembrane pressure (TMP), pH and concentration of feed solution) on lignocellulosic flux was analysed using pore blocking model. The feasible approaches on utilising deep learning artificial neural network (ANN) to predict smaller flux datasets are studied. Among the input variables, pH of lignin feed solution has significant control towards flux and lignin rejection coefficient for both lignin and lignocellulosic solution. Alteration in the structure of lignin at different pH conditions contributed in the improvement of lignin rejection coefficient to 0.98 at the feed pH of 9. A maximum steady state flux of 52.03 L/m2h was observed at the lower lignin concentration (0.25 g/L), TMP of 200 kPa and feed pH of 3. At high TMP and concentration, lignin rejection decreased due to enhancement of feed concentration on membrane surface. The mechanistic model exhibited that cake layer phenomena was dominant in both lignin and lignocellulosic solution. The proposed ANN model showed good correlation (R2-1.00) with experimental non-linear flux dynamic data of both lignin and synthetic lignocellulosic solution. In ANN analysis, activation function, algorithm and neuron effect have significant effect in design of accurate model for prediction of small flux datasets. Aerobically-treated palm oil mill filtration analysis also showed that cake layer phenomenon was dominant. A water recovery of 82 % was achieved even at low TMP under short durations.
    Matched MeSH terms: Ultrafiltration*
  5. Lim JW, Lim PE, Seng CE, Adnan R
    Bioresour Technol, 2013 Feb;129:485-94.
    PMID: 23266850 DOI: 10.1016/j.biortech.2012.11.111
    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.
    Matched MeSH terms: Ultrafiltration/instrumentation
  6. Junaidi MU, Leo CP, Kamal SN, Ahmad AL
    Water Sci Technol, 2013;67(9):2102-9.
    PMID: 23656955 DOI: 10.2166/wst.2013.098
    Although ultrafiltration (UF) membranes are applicable in wastewater and water treatment, most UF membranes are hydrophobic and susceptible to severe fouling by natural organic matter. In this work, polysulfone (PSf) membrane was blended with silicaluminophosphate (SAPO) nanoparticles, SAPO-34, to study the effect of SAPO-34 incorporation in humic acid (HA) fouling mitigation. The casting solution was prepared by blending 5-20 wt% of SAPO-34 nanoparticles into the mixture of PSf, 1-methyl-2-pyrrolidinone and polyvinyl alcohol at 75 °C. All membrane samples were then prepared using the phase inversion method. Blending SAPO-34 zeolite into PSf membranes caused augmentation in surface hydrophilicity and pore size, leading to higher water permeation. In the HA filtration test, mixed matrix membranes (MMMs) with SAPO-34 zeolite showed reduced HA fouling initiated from pore blocking. The MMM with 20 wt% SAPO-34 loading exhibited the highest increment of water permeation (83%) and maintained about 75% of permeate flux after 2.5 h. However, the SAPO-34 fillers agglomerated in the PSf matrix and induced macrovoid formation on the membrane surface when excessive zeolite was added.
    Matched MeSH terms: Ultrafiltration/methods*
  7. Shamel MM, Azaha RB, Al-Zuhair S
    PMID: 16317961
    The amount of lipase from Mucor miehei adsorption on ultrafiltration polysulfone hollow fiber membrane chips has been determined using different lipase concentrations at three different temperatures, namely 30, 35, and 40 degrees C. It was experimentally shown that adsorption of lipase increases with temperature. The results were used to evaluate the constants found in the Langmuir adsorption isotherm model coupled with the Van't Hoff's relationship. A temperature dependence correlation for the amount of adsorbed lipase activity, alip,ads, and that present in the supernatant solution, alip,free was determined. The effect of varying the concentration on a cross-linking agent, namely, glutaraldehyde, to the membrane chips was also tested. It was found that, under the same operating conditions, the amount of lipase adsorbed on polysulfone membranes was increased dramatically after pre-treating the membrane with 1% Glutaraldehyde. However, increasing the concentration of the cross-linking agent has a low effect on the amount of lipase adsorbed.
    Matched MeSH terms: Ultrafiltration/instrumentation
  8. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Ultrafiltration/instrumentation*
  9. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Ultrafiltration/methods*
  10. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Ultrafiltration
  11. Quah Y, Mohd Ismail NI, Ooi JLS, Affendi YA, Abd Manan F, Teh LK, et al.
    J Zhejiang Univ Sci B, 2019 1 8;20(1):59-70.
    PMID: 30614230 DOI: 10.1631/jzus.B1700586
    Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
    Matched MeSH terms: Ultrafiltration
  12. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Ultrafiltration
  13. Leong YK, Xui OC, Chia OK
    J Food Prot, 2008 May;71(5):1035-7.
    PMID: 18522042
    Survival of rotavirus in fresh fruit juices of papaya (Caraca papaya L.), honeydew melon (Cucumis melo L.), and pineapple (Ananas comosus [L.] Merr.) was studied. Clarified juices were prepared from pulps of ripe fruits and sterilized by ultrafiltration. One milliliter of juice from each fruit was inoculated with 20 microl of 1 x 10(6) PFU of SA11 rotavirus and sampled immediately (0-h exposure) and 1 and 3 h later at 28 degrees C. Mean viral titers in juices of papaya (pH 5.1) and honeydew melon (pH 6.3) at 1 and 3 h were not significantly different from titers at 0-h exposure. Mean viral titers in juices from pineapples with ripening color indices of 3 (pH 3.6) and 6 (pH 3.7) at 1-h exposure (color index 3: 4.0 +/- 1.7 x 10(4); color index 6: 2.3 +/- 0.3 x 10(5)) and 3-h exposure (color index 3: 1.1 +/- 0.4 x 10(4); color index 6:1.3 +/- 0.6 x 10(5)) were significantly lower than titers at 0-h exposure (color index 3: 5.7 +/- 2.9 x 10(5); color index 6: 7.4 +/- 1.3 x 10(5)). Virus titers in pineapple juices of color index 3 were significantly lower than titers of the virus in juices of index 6. In cell culture medium (pH 7.4), SA11 titer remained stable over 3 h at 28 degrees C. However, at pH 3.6, the virus titer was reduced to a level not significantly different from that of the virus in pineapple juice of color index 6 (pH 3.7). In conclusion, papaya and honeydew melon juices, in contrast to pineapple juice, have the potential to transmit rotavirus. Inactivation of SA11 virus in pineapple juice can be possibly attributed to low pH and constituent(s) in the juice.
    Matched MeSH terms: Ultrafiltration
  14. Moeinzadeh R, Jadval Ghadam AG, Lau WJ, Emadzadeh D
    Carbohydr Polym, 2019 Dec 01;225:115212.
    PMID: 31521264 DOI: 10.1016/j.carbpol.2019.115212
    In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
    Matched MeSH terms: Ultrafiltration
  15. Syed Ibrahim GP, Isloor AM, Ismail AF, Farnood R
    Sci Rep, 2020 04 23;10(1):6880.
    PMID: 32327672 DOI: 10.1038/s41598-020-63356-2
    In this paper, novel zwitterionic graphene oxide (GO) nanohybrid was synthesized using monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and N,N'-methylenebis(acrylamide) (MBAAm) (GO@poly(SBMA-co-MBAAm), and incorporated into polysulfone (PSF) hollow fiber membrane for the effectual rejection of dye from the wastewater. The synthesized nanohybrid was characterized using FT-IR, PXRD, TGA, EDX, TEM and zeta potential analysis. The occurrence of nanohybrid on the membrane matrix and the elemental composition were analyzed by XPS. The as-prepared tight ultrafiltration hollow fiber membrane exhibited high rejection of reactive black 5 (RB-5, 99%) and reactive orange 16 (RO-16, 74%) at a dye concentration of 10 ppm and pure water flux (PWF) of 49.6 L/m2h. Fabricated nanocomposite membranes were also studied for their efficacy in the removal of both monovalent (NaCl) and divalent salts (Na2SO4). The results revealed that the membrane possesses complete permeation to NaCl with less rejection of Na2SO4 (<5%). In addition, the nanocomposite membrane revealed outstanding antifouling performance with the flux recovery ratio (FRR) of 73% towards bovine serum albumin (BSA). Therefore, the in-house prepared novel nanocomposite membrane is a good candidate for the effective decolorization of wastewater containing dye.
    Matched MeSH terms: Ultrafiltration
  16. Md Zain SN, Bennett R, Flint S
    J Food Sci, 2017 Mar;82(3):751-756.
    PMID: 28135405 DOI: 10.1111/1750-3841.13633
    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%.
    Matched MeSH terms: Ultrafiltration
  17. Tan IA, Ahmad AL, Hameed BH
    Bioresour Technol, 2009 Feb;100(3):1494-6.
    PMID: 18809316 DOI: 10.1016/j.biortech.2008.08.017
    This study investigated the adsorption potential of oil palm shell-based activated carbon to remove 2,4,6-trichlorophenol from aqueous solution using fixed-bed adsorption column. The effects of 2,4,6-trichlorophenol inlet concentration, feed flow rate and activated carbon bed height on the breakthrough characteristics of the adsorption system were determined. The regeneration efficiency of the oil palm shell-based activated carbon was evaluated using ethanol desorption technique. Through ethanol desorption, 96.25% of the adsorption sites could be recovered from the regenerated activated carbon.
    Matched MeSH terms: Ultrafiltration/methods*
  18. Ong KK, Fakhru'l-Razi A, Baharin BS, Hassan MA
    PMID: 10595436
    The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse.
    Matched MeSH terms: Ultrafiltration/methods*
  19. El-Garhi HM, El-Aidie SA, Rashid NA, Hayee ZA
    Food Sci Technol Int, 2018 Sep;24(6):465-475.
    PMID: 29600878 DOI: 10.1177/1082013218766979
    This study was undertaken to evaluate the feasibility of using commercial starter cultures for quality improvement of spreadable processed cheese manufactured from ultrafiltered milk retentates. Compared to control, six samples of ultrafiltered milk retentate were incubated at 25 ℃ with starter cultures CHN-22, FRC-60, and ABT-8. Three samples were incubated for 24 h and the others were incubated for 72 h. Physicochemical, microbiological, and organoleptic characteristics in all treatments during the 90-day cold storage (6 ± 2 ℃) period were determined. The results showed that protein content of all treatments was significantly lower than the control. Utilization of starter cultures in ultrafiltered processed cheese production increased titratable acidity, where titratable acidity of the treatments (PC22-3, PC60-3, and PC8-3) was significantly higher than the other treatments and the control. PC8-1, PC60-1, and PC22-1 treatments were the highest penetrometer readings and with low firmness. All treatments had higher water soluble nitrogen/total nitrogen%, total bacterial viable and lactic acid bacterial counts especially PC22-3, PC60-3, and PC8-3 compared to the control. The results revealed that PC60-1 and PC22-3 treatments gained the highest acceptability scores than PC60-3, PC22-1, and the control.
    Matched MeSH terms: Ultrafiltration
  20. Mak WY, Leong CT, Ong LM, Bavanandan S, Mushahar L, Goh BL, et al.
    Perit Dial Int, 2021 05;41(3):273-283.
    PMID: 33733911 DOI: 10.1177/0896860821993954
    BACKGROUND: We compared the clinical effectiveness of a new peritoneal dialysis (PD) product with polyvinyl chloride-containing tubing (Stay Safe Link®, SSL) with the plastic-free alternative (Stay Safe®, STS) in patients on continuous ambulatory peritoneal dialysis (CAPD).

    METHOD: A multicentre, parallel, randomised, controlled, open-label, non-inferiority trial was conducted. Adult patients receiving CAPD were randomised in a 1:1 ratio to SSL or STS. The primary outcome was the rate of peritonitis after 1 year of follow-up.

    RESULTS: A total of 472 subjects were randomised (SSL, n = 233; STS, n = 239). One subject in each group was excluded from the analysis as they withdrew consent before the first dialysis dose. Four hundred and seventy subjects (SSL, n = 232; STS, n = 238) were included in the modified intention-to-treat analysis. Non-inferiority between two groups was established as no significant difference was found in peritonitis rate (incident rate ratio: 0.91, 95% CI: 0.65-1.28). No significant difference was detected in weekly Kt/V (p = 0.58) and creatinine clearance (p = 0.55). However, the average ultrafiltration volume was significantly lower in SSL, with a mean difference of 93 ml (p < 0.01). SSL also demonstrated a 2.57-times higher risk of device defect than STS (95% CI: 1.77-3.75).

    CONCLUSION: SSL was non-inferior in peritonitis rate compared to plastic-free STS over 1 year in patients requiring CAPD. There was no difference in the delivered dialysis dose, but there was a higher rate of device defects with SSL.

    Matched MeSH terms: Ultrafiltration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links