Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Khalilpourfarshbafi M, Devi Murugan D, Abdul Sattar MZ, Sucedaram Y, Abdullah NA
    PLoS One, 2019;14(6):e0218792.
    PMID: 31226166 DOI: 10.1371/journal.pone.0218792
    The increased prevalence of obesity and associated insulin resistance calls for effective therapeutic treatment of metabolic diseases. The current PPARγ-targeting antidiabetic drugs have undesirable side effects. The present study investigated the anti-diabetic and anti-obesity effects of withaferin A (WFA) in diet-induced obese (DIO) C57BL/6J mice and also the anti-adipogenic effect of WFA in differentiating 3T3- F442A cells. DIO mice were treated with WFA (6 mg/kg) or rosiglitazone (10 mg/kg) for 8 weeks. At the end of the treatment period, metabolic profile, liver function and inflammatory parameters were obtained. Expression of selective genes controlling insulin signaling, inflammation, adipogenesis, energy expenditure and PPARγ phosphorylation-regulated genes in epididymal fats were analyzed. Furthermore, the anti-adipogenic effect of WFA was evaluated in 3T3- F442A cell line. WFA treatment prevented weight gain without affecting food or caloric intake in DIO mice. WFA-treated group also exhibited lower epididymal and mesenteric fat pad mass, an improvement in lipid profile and hepatic steatosis and a reduction in serum inflammatory cytokines. Insulin resistance was reduced as shown by an improvement in glucose and insulin tolerance and serum adiponectin. WFA treatment upregulated selective insulin signaling (insr, irs1, slc2a4 and pi3k) and PPARγ phosphorylation-regulated (car3, selenbp1, aplp2, txnip, and adipoq) genes, downregulated inflammatory (tnf-α and il-6) genes and altered energy expenditure controlling (tph2 and adrb3) genes. In 3T3- F442A cell line, withaferin A inhibited adipogenesis as indicated by a decrease in lipid accumulation in differentiating adipocytes and protein expression of PPARγ and C/EBPα. The effect of rosiglitazone on physiological and lipid profiles, insulin resistance, some genes expression and differentiating adipocytes were markedly different. Our data suggest that WFA is a promising therapeutic agent for both diabetes and obesity.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology
  2. Kong WT, Chua SS, Alwi S
    Asia Pac J Public Health, 2002;14(2):99-104.
    PMID: 12862414 DOI: 10.1177/101053950201400208
    The practice of losing weight is gaining popularity globally with an increase in health consciousness among the general public. A survey was conducted in seven shopping centres in Kuala Lumpur and its neighbouring towns to assess the weight-loss practices of the general public. Out of the 1032 people approached by the researcher, 389 (37.7%) admitted that they had tried to lose weight before. Of these respondents, 50.4% had the wrong perceptions about their weight with 39.1% of the respondents having BMI lower than what they had perceived. The most common weight-loss method used was dieting (89.5%), followed by exercise (81%) and the use of slimming teas (24.9%). Exercise (79.0%) was perceived as the most effective method for losing weight, followed by dieting (71.6%). Most respondents (60.6%) obtained their weight-loss products from the pharmacies but only 34.9% of these respondents had consulted the pharmacists on these products. Therefore, pharmacists should play a more active role in assisting the general public to lose weight successfully and safely.
    Matched MeSH terms: Anti-Obesity Agents/adverse effects; Anti-Obesity Agents/therapeutic use
  3. Grube B, Chong PW, Alt F, Uebelhack R
    J Obes, 2015;2015:953138.
    PMID: 26435849 DOI: 10.1155/2015/953138
    Litramine (IQP-G-002AS) was shown to be effective and safe for weight loss in overweight and obese subjects. However, long-term effectiveness on maintenance of body weight loss has yet to be ascertained.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology; Anti-Obesity Agents/therapeutic use*
  4. Chuah LO, Ho WY, Beh BK, Yeap SK
    PMID: 23990846 DOI: 10.1155/2013/751658
    Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (-)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
    Matched MeSH terms: Anti-Obesity Agents
  5. Murni Aliza Abd Malik, Noor Azimah Muhammad, Mohd Fairuz Ali
    MyJurnal
    Local profiles on the use of weight loss products are scarce. The study aims to address this together with concerns on the users’ misperception of the safety of these products, and the absence of high-quality evidence to support such use. Methods: This was a cross-sectional study conducted in overweight and obese patients attending a public primary care clinic in Penang. Selected patients were given a set of self-administered questionnaire that assessed types of weight loss products used, factors that influenced the usage and the users’ perception of their own body weight and the diet products they are taking. Results: From 332 participants of this study, 18.7% were users. Mean age of users were 44.6 (SD 11.9) years. The majority (66.1%) only used dietary supplements, 11.3% used weight loss medications and the rest (22.6%) used both products. Reasons for its use were for health, a faster result to lose weight and failing dieting and exercise regimes. The average amount spent on this was RM100 per month. Commonest source of weight loss products were friends. Majority (80.6%) did not discuss the use of the products with doctors. Factors associated with the use of weight loss products were being female (AOR=5.59), had tertiary level education (AOR=2.27), being employed (AOR=3.42), self-perceived of overweight (AOR=3.61) and perception that weight loss products as safe (AOR 2.48). Conclusion: Users of weight loss products are among highly educated working females who perceived themselves as being overweight and assume the products are safe.
    Matched MeSH terms: Anti-Obesity Agents
  6. Al-Tahami BA, Ismail AA, Bee YT, Awang SA, Salha Wan Abdul Rani WR, Sanip Z, et al.
    Clin. Hemorheol. Microcirc., 2015;59(4):323-34.
    PMID: 24002121 DOI: 10.3233/CH-131765
    INTRODUCTION: Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR).
    METHODS: 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations.
    RESULTS: 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group.
    CONCLUSION: 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.
    KEYWORDS: Microvascular endothelial function; obesity; orlistat; sibutramine
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  7. Abdul Kadir NA, Rahmat A, Jaafar HZ
    J Obes, 2015;2015:846041.
    PMID: 26171246 DOI: 10.1155/2015/846041
    This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg(-1)), medium dose (200 mg kg(-1)), or high dose (300 mg kg(-1)) or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p < 0.05). Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity along with a significant increase of total antioxidant status (TAS) (p < 0.05). Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p < 0.05). This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  8. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Anti-Obesity Agents/metabolism*; Anti-Obesity Agents/therapeutic use; Anti-Obesity Agents/chemistry
  9. Duangjai A, Nuengchamnong N, Suphrom N, Trisat K, Limpeanchob N, Saokaew S
    Kobe J Med Sci, 2018 Oct 15;64(3):E84-E92.
    PMID: 30666038
    This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
    Matched MeSH terms: Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/pharmacology; Anti-Obesity Agents/chemistry
  10. Gooda Sahib N, Saari N, Ismail A, Khatib A, Mahomoodally F, Abdul Hamid A
    ScientificWorldJournal, 2012;2012:436039.
    PMID: 22666121 DOI: 10.1100/2012/436039
    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  11. Fairus A, Ima Nirwana S, Elvy Suhana MR, Tan MH, Santhana R, Farihah HS
    Clin Ter, 2013;164(1):5-10.
    PMID: 23455734 DOI: 10.7417/CT.2013.1502
    Visceral obesity may be due to the dysregulation of cortisol production or metabolism that lead to metabolic disease. In adipose tissue, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 regulates cortisol metabolism (11beta-HSD1). A previous study showed an increase in the visceral fat deposition in adrenalectomised rats given intramuscular dexamethasone. Glycyrrhizic acid (GCA) has been shown to reduce fat deposition because it is a known potent inhibitor of the 11beta-HSD1 enzyme. Piper sarmentosum (PS) is an edible medicinal plant commonly used in Asia as traditional medicine for treating diabetes, hypertension and joint pains. In this study, we determined the effects of PS extract on the disposition and morphology of perirenal adipocytes of adrenalectomised rats given intramuscular dexamethasone.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  12. Mohd Kamal DA, Ibrahim SF, Kamal H, Kashim MIAM, Mokhtar MH
    Nutrients, 2021 Jan 10;13(1).
    PMID: 33435215 DOI: 10.3390/nu13010197
    Tualang, Gelam and Kelulut honeys are tropical rainforest honeys reported to have various medicinal properties. Studies related to the medicinal properties and physicochemical characteristics of these honeys are growing extensively and receiving increased attention. This review incorporated and analysed the findings on the biological and physicochemical properties of these honeys. Tualang, Gelam and Kelulut honeys were found to possess a wide variety of biological effects attributed to their physicochemical characteristics. Findings revealed that these honeys have anti-diabetic, anti-obesity, anti-cancer, anti-oxidative, anti-microbial, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system and reproductive system. The physicochemical properties of these honeys were compared and discussed and results showed that they have high-quality contents and excellent antioxidant sources.
    Matched MeSH terms: Anti-Obesity Agents
  13. Taylor PW, Arnet I, Fischer A, Simpson IN
    Obes Facts, 2010 Aug;3(4):231-7.
    PMID: 20823686 DOI: 10.1159/000319450
    OBJECTIVE: To compare the pharmaceutical quality of Xenical (chemically produced orlistat) with nine generic products, each produced by fermentation processes.

    METHODS: Xenical 120 mg capsules (Roche, Basel, Switzerland) were used as reference material. Generic products were from India, Malaysia, Argentina, Philippines, Uruguay, and Taiwan. Colour, melting temperature, crystalline form, particle size, capsule fill mass, active pharmaceutical ingredient content, amount of impurities, and dissolution were compared. Standard physical and chemical laboratory tests were those developed by Roche for Xenical.

    RESULTS: All nine generic products failed the Xenical specifications in four or more tests, and two generic products failed in seven tests. A failure common to all generic products was the amount of impurities present, mostly due to different by-products, including side-chain homologues not present in Xenical. Some impurities were unidentified. Two generic products tested failed the dissolution test, one product formed a capsule-shaped agglomerate on storage and resulted in poor (=15%) dissolution. Six generic products were powder formulations.

    CONCLUSIONS: All tested generic orlistat products were pharmaceutically inferior to Xenical. The high levels of impurities in generic orlistat products are a major safety and tolerability concern.

    Matched MeSH terms: Anti-Obesity Agents/standards*; Anti-Obesity Agents/chemistry
  14. Ahmed N, Nounou MI, Abouelfetouh A, El-Kamel A
    Med Princ Pract, 2019;28(2):167-177.
    PMID: 30517949 DOI: 10.1159/000495986
    OBJECTIVES: Nutraceuticals are advertised and sold with the label claim of being natural and safe herbal products. Due to the absence of clear regulations and guidelines for safety assessments of these products, nutraceuticals are commonly adulterated in order to increase sales. The objective of the current study was to design a comprehensive evaluation system to assess the safety, efficacy, authenticity according to label claim, and pharmaceutical quality of herbal slimming products in between 2015 and 2017.

    METHODS: We designed a comprehensive assessment system to evaluate the safety, authenticity according to label claim, and pharmaceutical quality of slimming nutraceuticals. Six different popular products were evaluated (Zotreem Plus®, Zotreem Extra®, Malaysian Super Slim®, AB Slim®, Chinese Super Slim®, and Metabolites®). The pharmaceutical evaluation included analyzing the samples via high-performance liquid chromatography to determine any possible adulterants. Additionally, the products' physical properties were assessed via pharmacopeial tests. Finally, a microbial evaluation and a cross-sectional observational retrospective prevalence study were conducted to assess the products' safety and efficacy. -Results: The tested products were found to be adulterated with unreported active pharmaceutical ingredients such as sibutramine, sildenafil, phenolphthalein, and orlistat. Furthermore, they contained heterogeneous amounts of adulterants and exhibited an unsatisfactory pharmaceutical and microbial quality. Finally, the observational survey conducted on users showed that high percentages of participants suffered from common side effects such as depression, diarrhea, and hypertension.

    CONCLUSIONS: These products threaten the health of consumers. There is a need to raise awareness of the lethal consequences of illegal nutraceuticals.

    Matched MeSH terms: Anti-Obesity Agents/adverse effects; Anti-Obesity Agents/analysis*
  15. Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Usman UZ, et al.
    Reproduction, 2020 12;160(6):863-872.
    PMID: 33112813 DOI: 10.1530/REP-20-0381
    Obesity and its accompanying complications predispose to abnormal testicular glucose metabolism, penile erectile dysfunction and subfertility. This study examined the potentials of orlistat in attenuating erectile dysfunction and fertility decline in high-fat diet (HFD)-induced obesity in male rats. Eighteen adult male Sprague-Dawley rats whose weights were between 250 and 300 g were divided into three groups (n = 6/group) namely: normal control (NC), HFD and HFD + orlistat (10 mg/kg body weight/day co-administered for 12 weeks) (HFD+O). During the 11th and 12th week, mating behaviour and fertility parameters were evaluated, and parameters of glucose metabolism were assessed at the end of the 12th week. Orlistat increased testicular mRNA levels of glucose transporters (Glut1 and Glut3), monocarboxylate transporters (Mct2 and Mct4) and lactate dehydrogenase type C (Ldhc), decreased intratesticular lactate and glucose levels, and LDH activity in obese rats. Furthermore, orlistat increased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities, and total antioxidant capacity (TAC), but decreased malondialdehyde level in the penis of obese rats. Similarly, orlistat improved penile cGMP level, sexual behaviour and fertility outcome in obese rats. Penile cGMP level correlated positively with total mounts and intromissions but correlated negatively with mount/intromission ratio. Orlistat improves fertility potential in obese state by targeting testicular lactate metabolism, penile oxidative stress and sexual behaviour in rats. Therefore, orlistat shows a promising protective effect and may preserve the fertility potential of obese men.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  16. Suleiman JB, Nna VU, Othman ZA, Zakaria Z, Bakar ABA, Mohamed M
    Andrology, 2020 09;8(5):1471-1485.
    PMID: 32438512 DOI: 10.1111/andr.12824
    BACKGROUND: Steroidogenesis decline is reported to be one of the mechanisms associated with obesity-induced male factor subfertility/infertility.

    OBJECTIVES: We explored the possible preventive/therapeutic effects of orlistat (a medication prescribed for weight loss) on obesity-induced steroidogenesis and spermatogenesis decline.

    MATERIALS AND METHODS: Twenty-four adult male Sprague Dawley rats weighing 250-300 g were randomized into four groups (n = 6/group), namely; normal control, high-fat diet, high-fat diet plus orlistat preventive group and high-fat diet plus orlistat treatment group. Orlistat (10 mg/kg/b.w./d suspended in distilled water) was either concurrently administered with high-fat diet for 12 weeks (high-fat diet plus orlistat preventive group) or administered from week 7-12 post- high-fat diet feeding (high-fat diet plus orlistat treatment group). Thereafter, serum, testes and epididymis were collected for analyses.

    RESULTS: Obesity increased serum leptin and decreased adiponectin levels, decreased serum and intra-testicular levels of follicle stimulating hormone, luteinising hormone and testosterone, sperm count, motility, viability, normal morphology and epididymal antioxidants, but increased epididymal malondialdehyde level and sperm nDNA fragmentation. Testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were significantly decreased in the testes of the high-fat diet group. Further, the levels of steroidogenic acute regulatory protein protein and enzymatic activities of CYP11A1, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were also significantly decreased in the testes of the high-fat diet group. Treatment with orlistat significantly decreased leptin and increased adiponectin levels, improved sperm parameters, decreased sperm DNA fragmentation, increased the levels of steroidogenic hormones, proteins and associated genes in high-fat diet-induced obese male rats, with the preventive group (high-fat diet plus orlistat preventive group) having better results relative to the treatment group (high-fat diet plus orlistat treatment group).

    DISCUSSION AND CONCLUSION: Orlistat attenuated impaired spermatogenesis and steroidogenesis decline by up-regulating steroidogenic genes. This may not be unconnected to its significant effect in lowering serum leptin levels, since the hormone is known to dampen fertility potential. Therefore, orlistat may improve fertility potential in overweight/obese men.

    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  17. Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Mohamed M
    Reprod Toxicol, 2020 08;95:113-122.
    PMID: 32450208 DOI: 10.1016/j.reprotox.2020.05.009
    Obesity has been reported to induce oxidative stress, inflammation and apoptosis in the testis. The objective of this study was to determine the effects of the anti-obesity drug orlistat, on testicular oxidative stress, inflammation and apoptosis in high-fat diet (HFD)-fed rats. Twenty-four adult male Sprague Dawley rats weighing 250-300 g were randomized into four groups (n = 6/group), namely; normal control (NC), high-fat diet (HFD), HFD plus orlistat (10 mg/kg body weight/day administered concurrently for 12 weeks) (HFD + Opr) and HFD plus orlistat (10 mg/kg body weight/day administered 6 weeks after induction of obesity) (HFD + Ot) groups. Antioxidant enzymes activities were significantly decreased, while mRNA levels of pro-apoptotic markers (p53, Bax/BCl-2, caspase-9, caspase-8 and caspase-3) were significantly increased in the testis of HFD group relative to NC group. Furthermore, the mRNA levels of pro-inflammatory markers (nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis factor alpha and interleukin (IL)-1β increased significantly, while anti-inflammatory marker (IL-10) decreased significantly in the testis of the HFD group relative to NC group. However, in both models of orlistat intervention (protective and treatment models) up-regulated antioxidant enzymes, down-regulated inflammation and apoptosis were observed in the testis of HFD-fed rats. Orlistat ameliorated testicular dysfunction by attenuating oxidative stress, inflammation and apoptosis in HFD-fed rats, suggesting its potential protective and therapeutic effects in the testis compromised by obesity.
    Matched MeSH terms: Anti-Obesity Agents/therapeutic use*
  18. Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J
    Mol Biol Rep, 2021 Jan;48(1):743-761.
    PMID: 33275195 DOI: 10.1007/s11033-020-06036-8
    Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
    Matched MeSH terms: Anti-Obesity Agents/therapeutic use*; Anti-Obesity Agents/chemistry
  19. Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z
    PMID: 26640503 DOI: 10.1155/2015/973143
    Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.
    Matched MeSH terms: Anti-Obesity Agents
  20. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology; Anti-Obesity Agents/therapeutic use*; Anti-Obesity Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links