Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Li C, Liu J, Shaozhou W, Bai X, Zhang Q, Hua R, et al.
    Viruses, 2016 Nov 10;8(11).
    PMID: 27834908
    Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to (221)LD/NLPW(225) and (87)YAEYI(91) by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas (221)LD/NLPW(225) was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
    Matched MeSH terms: Antigens, Viral/immunology
  2. Eshaghi M, Tan WS, Mohidin TB, Yusoff K
    Virus Res, 2004 Nov;106(1):71-6.
    PMID: 15522449
    A method for serological diagnosis of Nipah virus (NiV) is described. DNA encoding truncated G protein of NiV was cloned into the pFastBac HT vector, and the fusion protein to His-tag was expressed in insect cells by recombinant baculovirus. The resulting His-G recombinant fusion protein was purified by affinity chromatography and used as the coating antigen for serological testing by indirect enzyme-linked immunosorbant assay (ELISA). When tested against a panel of swine serum samples, the recombinant G protein-based ELISA successfully discriminated all 40 samples previously determined to be serum neutralizing test (SNT) positive from 11 SNT negatives samples. The data show that the recombinant G protein exhibits the antigenic epitopes and conformation necessary for specific antigen-antibody recognition. The main advantage of the recombinant G protein-based NiV ELISA compared to an ELISA using whole virus antigen is the use of a single antigenic protein instead of inactivated whole virus which is required to be prepared under high risk and cost. This test is suitable for routine diagnosis of NiV and also for epidemiological surveys as it allows highly reliable testing of a large number of sera rapidly.
    Matched MeSH terms: Antigens, Viral/immunology*
  3. Yap KL
    Malays J Pathol, 1994 Jun;16(1):49-56.
    PMID: 16329576
    The aim of this study was to optimize the conditions for the passive adsorption of polyclonal antibody onto plain surface polystyrene latex particles and its performance in a slide latex agglutination test for rotavirus antigen detection. Cleaning of latex particles by washing through repetitive centrifuging, decanting and resuspending in distilled water was adequate in removing surfactants from the particles' surfaces to enable coating. A study of antibody concentration, incubation temperature and buffer pH revealed that optimum coating was achieved with a 3-fold excess of antibody to the calculated total particle surface capacity for the antibody in a glycine-saline buffer of pH 9.2 at 40 degrees C for 4 hours. The ionic strength and pH of the latex suspending buffer and the sample buffer were critical factors determining the sensitivity of the test and the appearance of non-specific agglutination. Ultrasonication, addition of glycerol and Tween 20, either individually or in combination, were able to suppress non-specific agglutination in some batches of latex reagents. Polyethylene glycol 6000 enhanced the quality of agglutination as well as reduced the time of its appearance, especially in reagents that produced poor agglutination.
    Matched MeSH terms: Antigens, Viral/immunology
  4. Vythilingam I, Oda K, Tsuchie H, Mahadevan S, Vijayamalar B
    J Am Mosq Control Assoc, 1994 Jun;10(2 Pt 1):228-9.
    PMID: 8965071
    Isolation of Japanese encephalitis virus (JEV) from mosquitoes in Sabak Bernam, Selangor, Malaysia, was attempted. An aliquot of homogenate from each pool of mosquitoes, 50 per tube, was inoculated into Aedes albopictus clone C6/36 cells for virus isolation. Each cell culture was tested for the presence of viral antigen by immunoperoxidase staining using an anti-JEV polyclonal antibody. Out of 4 Culex sitiens mosquito pools, 2 pools were positive for JEV by cell culture. Presence of JEV genome in the cell cultures for Cx. sitiens was confirmed by using reverse transcriptase-polymerase chain reaction and JEV-specific primers. This is the first report on the isolation of JEV from Cx. sitiens.
    Matched MeSH terms: Antigens, Viral/immunology*
  5. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Biosci Bioeng, 2012 Jan;113(1):26-9.
    PMID: 22024533 DOI: 10.1016/j.jbiosc.2011.09.007
    The C-terminal domain of Nipah virus (NiV) nucleocapsid protein (NP₄₀₁₋₅₃₂) was inserted at the N-terminus and the immunodominant loop of hepatitis B core antigen (HBc). The stability of NP₄₀₁₋₅₃₂ increased tremendously when displayed on the HBc particles. These particles reacted specifically with the swine anti-NiV and the human anti-HBc antisera.
    Matched MeSH terms: Antigens, Viral/immunology*
  6. Yee SF, Chu CH, Poili E, Sum MSH
    J Virol Methods, 2017 02;240:69-72.
    PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001
    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
    Matched MeSH terms: Antigens, Viral/immunology*
  7. Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE
    BMC Vet Res, 2019 May 22;15(1):165.
    PMID: 31118053 DOI: 10.1186/s12917-019-1909-6
    BACKGROUND: Feline infectious peritonitis (FIP) is considered highly fatal in its naturally occurring form, although up to 36% of cats resist disease after experimental infection, suggesting that cats in nature may also resist development of FIP in the face of infection with FIP virus (FIPV). Previous experimental FIPV infection studies suggested a role for cell-mediated immunity in resistance to development of FIP. This experimental FIPV infection study in specific pathogen free (SPF) kittens describes longitudinal antiviral T cell responses and clinical outcomes ranging from rapid progression, slow progression, and resistance to disease.

    RESULTS: Differences in disease outcome provided an opportunity to investigate the role of T cell immunity to FIP determined by T cell subset proliferation after stimulation with different viral antigens. Reduced total white blood cell (WBC), lymphocyte and T cell counts in blood were observed during primary acute infection for all experimental groups including cats that survived without clinical FIP. Antiviral T cell responses during early primary infection were also similar between cats that developed FIP and cats remaining healthy. Recovery of antiviral T cell responses during the later phase of acute infection was observed in a subset of cats that survived longer or resisted disease compared to cats showing rapid disease progression. More robust T cell responses at terminal time points were observed in lymph nodes compared to blood in cats that developed FIP. Cats that survived primary infection were challenged a second time to pathogenic FIPV and tested for antiviral T cell responses over a four week period. Nine of ten rechallenged cats did not develop FIP or T cell depletion and all cats demonstrated antiviral T cell responses at multiple time points after rechallenge.

    CONCLUSIONS: In summary, definitive adaptive T cell responses predictive of disease outcome were not detected during the early phase of primary FIPV infection. However emergence of antiviral T cell responses after a second exposure to FIPV, implicated cellular immunity in the control of FIPV infection and disease progression. Virus host interactions during very early stages of FIPV infection warrant further investigation to elucidate host resistance to FIP.

    Matched MeSH terms: Antigens, Viral/immunology
  8. Barathan M, Mohamed R, Vadivelu J, Chang LY, Vignesh R, Krishnan J, et al.
    Cell Immunol, 2017 03;313:1-9.
    PMID: 28104239 DOI: 10.1016/j.cellimm.2016.12.002
    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.
    Matched MeSH terms: Antigens, Viral/immunology
  9. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Antigens, Viral/immunology
  10. Kim JD, Lee AR, Moon DH, Chung YU, Hong SY, Cho HJ, et al.
    Emerg Microbes Infect, 2024 Dec;13(1):2343910.
    PMID: 38618740 DOI: 10.1080/22221751.2024.2343910
    Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.
    Matched MeSH terms: Antigens, Viral/immunology
  11. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Antigens, Viral/immunology
  12. Tan EL, Selvaratnam G, Kananathan R, Sam CK
    BMC Cancer, 2006;6:227.
    PMID: 16995954
    Nasopharyngeal carcinoma (NPC) is a common epithelial neoplasm among the Chinese populations in Southern China and South East Asia. Epstein-Barr virus (EBV) is known to be an important etiologic agent of NPC and the viral gene products are frequently detected in NPC tissues along with elevated antibody titres to the viral proteins (VCA and EA) in a majority of patients. Elevated plasma EBV DNA load is regarded as an important marker for the presence of the disease and for the monitoring of disease progression. However, other serum/plasma parameters such as the levels of certain interleukins and growth factors have also been implicated in NPC. The objectives of the present study are, 1) to investigate the correlations between plasma EBV DNA load and the levels of interleukin (IL)-6, IL-10, TGF-beta1 and SCF (steel factor) and 2) to relate these parameters to the stages of NPC and the effect of treatment.
    Matched MeSH terms: Antigens, Viral/immunology
  13. Wong MM, Lye MS, Cheng HM, Sam CK
    Asian Pac J Allergy Immunol, 2005 Mar;23(1):65-7.
    PMID: 15997877
    The antibody levels to viral capsid antigen (VCA) and early antigen (EA) of Epstein-Barr virus (EBV) in 164 nasopharyngeal carcinoma (NPC) patients from Sarawak, East Malaysia were significantly higher than those in 147 sex, age and ethnically matched healthy controls. As diagnostic markers of NPC, IgG/VCA at reciprocal titers > or =160 was the most sensitive (89%, with 98% specificity), while IgA/EA at > or =5 was the most specific (100%) but the least sensitive (75%). The sensitivity and specificity of IgA/VCA at reciprocal titers > or =10 were 84% and 97%. IgA/VCA has an advantage over IgG/VCA despite the slightly lower sensitivity due to its consistently more distinct fluorescence reaction. The sensitivity and specificity can be marginally improved by a combination of two tests.
    Matched MeSH terms: Antigens, Viral/immunology*
  14. Yeo CH, Hsien YC, Abdullah MS, Telesinghe PU, Ramasamy R
    Singapore Med J, 2009 Apr;50(4):371-7.
    PMID: 19421680
    Little or no information is available on the prevalence of nasopharyngeal carcinoma (NPC) among different ethnic groups in Brunei, or how useful plasma IgA antibodies are against viral capsid antigen (VCA) and early antigen (EA) in the diagnosis of NPC, even though they are routinely measured in patients suspected to have NPC.
    Matched MeSH terms: Antigens, Viral/immunology*
  15. Mathew A, Cheng HM, Sam CK, Prasad U
    Clin. Immunol. Immunopathol., 1994 May;71(2):164-8.
    PMID: 7514112
    Inhibition studies were carried out to study possible cross-reactivity between a peptide fragment of the Epstein-Barr virus nuclear antigen, EBNA-1, and keratin/collagen. The 20-amino acid peptide (pAG), derived from a glycine-alanine repeat region of EBNA-1, uniquely makes up about one-third of the viral protein and is a dominant IgA antigenic epitope in patients with nasopharyngeal carcinoma (NPC). A small percentage of normal human sera (NHS) also binds pAG and this reactivity is examined in this study. Ten percent (2/20) and 13.4% (2/15) of IgA-pAG-positive NPC sera and NHS, respectively, were significantly inhibited by keratin in a competitive ELISA system. Conversely, 31.6% (6/19) and 30.8% (4/13) of IgA-keratin-positive NPC sera and NHS, respectively, were significantly inhibited by pAG. This indicated minimum cross-reactivity between IgA serum antibodies to EBNA-1 and keratin. Using collagen as inhibitor, none of 18 and only 2/13 IgA-pAG-positive NPC sera and NHS, respectively, were inhibited. In the collagen ELISA system, only 2/19 (10.5%) and 4/25 (16%) of IgA-collagen-positive NPC sera and NHS, respectively, were inhibited with pAG. Therefore, cross-reactivity with collagen was also low. IgA-pAG-positive NHS may therefore not be a false positive phenomenon, but whether it may represent an early serological profile related to NPC carcinogenesis remains to be determined.
    Matched MeSH terms: Antigens, Viral/immunology*
  16. Foong YT, Cheng HM, Sam CK, Dillner J, Hinderer W, Prasad U
    Int J Cancer, 1990 Jun 15;45(6):1061-4.
    PMID: 1693600
    The Epstein-Barr virus nuclear antigen I (EBNA I) is the only latent EBV antigen consistently expressed in malignant tissues of the nasopharynx. A 20-amino-acid synthetic peptide, p107 contains a major epitope of EBNA I. We tested sera from 210 patients with nasopharyngeal carcinoma (NPC) and from 128 normal individuals (NHS) for IgA antibodies to p107 using an enzyme-linked immunosorbent assay (ELISA). Whereas 191/210 (91%) of NPC patients had IgA antibodies to p107, only 17/128 (13.3%) of NHS had such antibodies and only 6/57 (10.5%) of sera from patients with malignancies other than NPC had IgA-p107 reactivity. Thirty-nine salivary samples from 46 NPC patients (84.8%) also contained IgA-p107 antibodies whereas only 3/42 (7.1%) of normal saliva samples were IgA-p107 positive. The results suggest that IgA antibodies to EBNA I may become a useful, easily measurable, marker for NPC.
    Matched MeSH terms: Antigens, Viral/immunology*
  17. Yadav M, Prasad U
    PMID: 6095462
    The antibody titres to P. falciparum and Epstein-Barr Virus-associated antigens were assayed in 22 patients with NPC and 43 controls. All, but one patient had antimalarial titres; 14 had titres greater than 80 and 4 patients greater than 640. Compared to controls the mean anti-malarial titre for most age groups were higher in the patients. Those patients with high anti-malarial titres also had high IgA anti-VCA titre, an antibody which has been demonstrated to be diagnostic for NPC. The peak anti-VCA (IgG) and anti-EA (IgG) antibody titres were associated with anti-falciparum titres of 320-640 and 80-160, respectively. The results are discussed in relation to the possible association between malarial infection and etiology of NPC.
    Matched MeSH terms: Antigens, Viral/immunology
  18. Se Thoe SY, Wong KK, Pathmanathan R, Sam CK, Cheng HM, Prasad U
    Gynecol Oncol, 1993 Aug;50(2):168-72.
    PMID: 8397152
    Epstein-Barr virus (EBV) receptors (EBV/C3d receptors) were detected, using the monoclonal antibody HB5, on 23 ectocervical and 5 endocervical biopsies of the uterine cervix. Elevated IgA titers against the viral capsid antigen and early antigen of EBV were also found in the cervical secretions from cervical carcinoma patients (83%), compared with samples from patients with cervical intraepithelial neoplasia (75%), herpes simplex virus-infected patients (0%), and gynecologic patients with nonmalignant conditions (0%). EBV DNA was present in 63% of cervical carcinoma biopsies detected by in situ hybridization. These observations suggest a positive association between EBV and carcinoma of the cervix.
    Matched MeSH terms: Antigens, Viral/immunology
  19. Cheng HM, Foong YT, Mathew A, Sam CK, Dillner J, Prasad U
    J Virol Methods, 1993 Apr;42(1):45-51.
    PMID: 7686558
    An ELISA using the Epstein-Barr virus nuclear antigen 1 (EBNA 1) was found to detect selectively specific IgA in sera from patients with nasopharyngeal carcinoma (NPC). The antigen, p107, was a 20-amino acid synthetic peptide, representing a major epitope of EBNA 1.267/294 (90.8%) of NPC patients had IgA antibodies to p107 but in normal individuals, only 41/577 (7.1%) had IgA/p107. In sera from patients with other cancers, 11/77 (14.3%) had IgA/p107 reactivity. 124 IgA/VCA positive and 86 IgA/VCA negative NPC sera were also tested for IgA/p107 binding in ELISA. The majority of IgA/VCA positive sera (117) also contained IgA/p107 antibodies. Of interest was the detection of 74/86 IgA/p107 reactive sera in the IgA/VCA negative group. The results suggest that the IgA/p107 ELISA could become a useful, complementary screening assay to the IgA/VCA immunofluorescence test for detection of NPC.
    Matched MeSH terms: Antigens, Viral/immunology
  20. Lim HX, Lim J, Poh CL
    Med Microbiol Immunol, 2021 Feb;210(1):1-11.
    PMID: 33515283 DOI: 10.1007/s00430-021-00700-x
    Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.
    Matched MeSH terms: Antigens, Viral/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links