Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Arsenic/chemistry
  2. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Arsenic/isolation & purification*; Arsenic/chemistry*
  3. Kato M, Azimi MD, Fayaz SH, Shah MD, Hoque MZ, Hamajima N, et al.
    Chemosphere, 2016 Dec;165:27-32.
    PMID: 27619645 DOI: 10.1016/j.chemosphere.2016.08.124
    Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the (238)U/(235)U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged.
    Matched MeSH terms: Arsenic/analysis
  4. Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L
    Compr Rev Food Sci Food Saf, 2014 Jul;13(4):457-472.
    PMID: 33412705 DOI: 10.1111/1541-4337.12068
    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular emphasis on the chemical binding of both the organic and inorganic forms of each element in various foods. The molecular groups and the ligands by which the food products bind with the metals and the types of these reactions are also presented.
    Matched MeSH terms: Arsenic
  5. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Arsenic/analysis*
  6. Elias MS, Ibrahim S, Samuding K, Rahman SA, Hashim A
    Mar Pollut Bull, 2018 Dec;137:646-655.
    PMID: 30503479 DOI: 10.1016/j.marpolbul.2018.11.006
    In this study, concentrations of heavy metals, rare earth elements (REEs), Uranium (U) and Thorium (Th) of the actinide group were determined from Linggi estuary sediment samples by neutron activation analysis (NAA) and inductive coupled plasma - mass spectrometry techniques. The geo-accumulation (Igeo) and ecological risk index (Ri) values were calculated to identify the quality status of Linggi estuary sediments. Results indicated Linggi estuary was polluted by arsenic (As), lead (Pb) and antimony (Sb). REEs, U and Th showed significant increase of concentration in Linggi estuary sediments. Ri of Linggi estuary was categorised as low to considerable ecological risk, which indicates no significant to moderate effect on the majority of the sediment-dwelling organisms. Correlation matrix and principal component analysis assessed pollution sources to be both natural and anthropogenic.
    Matched MeSH terms: Arsenic/analysis
  7. Mana SCA, Fatt NT, Ashraf MA
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22799-22807.
    PMID: 27987120 DOI: 10.1007/s11356-016-8195-7
    The field of arsenic pollution research has grown rapidly in recent years. Arsenic constitutes a broad range of elements from the Earth's crust and is released into the environment from both anthropogenic and natural sources due to its relative mobility under different redox conditions. The toxicity of arsenic is described in its inorganic form, as inorganic arsenic compounds can leach into different environments. Sampling was carried out in the Bestari Jaya catchment while using a land use map to locate the site, and experiments were conducted via sequential extraction and inductively coupled plasma optical emission spectroscopy to quantify proportions of arsenic in the sediment samples. The results show that metals in sediments of nonresidual fractions, which are more likely to be likely released into aquatic environments, are more plentiful than the residual sediment fractions. These findings support the mobility of heavy metals and especially arsenic through sediment layers, which can facilitate remediation in environments heavily polluted with heavy metals.
    Matched MeSH terms: Arsenic; Arsenicals
  8. Altowayti WAH, Algaifi HA, Bakar SA, Shahir S
    Ecotoxicol Environ Saf, 2019 May 15;172:176-185.
    PMID: 30708229 DOI: 10.1016/j.ecoenv.2019.01.067
    Globally, the contamination of water with arsenic is a serious health issue. Recently, several researches have endorsed the efficiency of biomass to remove As (III) via adsorption process, which is distinguished by its low cost and easy technique in comparison with conventional solutions. In the present work, biomass was prepared from indigenous Bacillus thuringiensis strain WS3 and was evaluated to remove As (III) from aqueous solution under different contact time, temperature, pH, As (III) concentrations and adsorbent dosages, both experimentally and theoretically. Subsequently, optimal conditions for As (III) removal were found; 6 (ppm) As (III) concentration at 37 °C, pH 7, six hours of contact time and 0.50 mg/ml of biomass dosage. The maximal As (III) loading capacity was determined as 10.94 mg/g. The equilibrium adsorption was simulated via the Langmuir isotherm model, which provided a better fitting than the Freundlich model. In addition, FESEM-EDX showed a significant change in the morphological characteristic of the biomass following As (III) adsorption. 128 batch experimental data were taken into account to create an artificial neural network (ANN) model that mimicked the human brain function. 5-7-1 neurons were in the input, hidden and output layers respectively. The batch data was reserved for training (75%), testing (10%) and validation process (15%). The relationship between the predicted output vector and experimental data offered a high degree of correlation (R2 = 0.9959) and mean squared error (MSE; 0.3462). The predicted output of the proposed model showed a good agreement with the batch work with reasonable accuracy.
    Matched MeSH terms: Arsenic
  9. Ahmad NF, Kamboh MA, Nodeh HR, Halim SNBA, Mohamad S
    Environ Sci Pollut Res Int, 2017 Sep;24(27):21846-21858.
    PMID: 28776296 DOI: 10.1007/s11356-017-9820-9
    The present work describes the successful functionalization/magnetization of bio-polymeric spores of Lycopodium clavatum (sporopollenin) with 1-(2-hydroxyethyl) piperazine. Analytical techniques, i.e., Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), were used to confirm the formation of 1-(2-hydroxyethyl) piperazine-functionalized magnetic sporopollenin (MNPs-Sp-HEP). The proposed adsorbent (MNPs-Sp-HEP) was used for the removal of noxious Pb(II) and As(III) metal ions from aqueous media through a batch-wise method. Different experimental parameters were optimized for the effective removal of selected noxious metal ions. Maximum adsorption capacity (q m ) 13.36 and 69.85 mg g-1 for Pb(II) and As(III), respectively, were obtained. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also studied from the adsorption results and were used to elaborate the mechanism of their confiscation. The obtained results indicated that newly adsorbent can be successfully applied for the decontamination of noxious Pb(II) and As(III) from the aqueous environment.
    Matched MeSH terms: Arsenic
  10. Raoov M, Mohamad S, Abas MR
    Int J Mol Sci, 2014;15(1):100-19.
    PMID: 24366065 DOI: 10.3390/ijms15010100
    β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m(2)/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
    Matched MeSH terms: Arsenic/isolation & purification; Arsenic/chemistry*
  11. Sherlala AIA, Raman AAA, Bello MM
    Environ Technol, 2019 May;40(12):1508-1516.
    PMID: 29300679 DOI: 10.1080/09593330.2018.1424259
    A magnetic graphene oxide (MGO) was developed for the adsorption of As(III) from aqueous solution. The characteristics of MGO were investigated using Fourier-transform infrared (FTIR), X-ray diffraction and field emission scanning electron microscope-E/energy-dispersive X-ray analyses. Batch adsorption experiments were designed using central composite design, and the effects of adsorbent dosage, pH, contact time and concentration of As(III) were investigated. The MGO showed an excellent performance, removing up to 99.95% of As(III) under the following condition: initial As(III) concentration = 100 mg/L, pH = 7, adsorbent dosage = 0.3 g/L and contact time = 77 min. MGO dosage and initial pH were the most significant parameters influencing the process performance. FTIR analysis of the used adsorbent confirms the adsorption of As(III) through complexation between surface functional groups of the MGO and the oxyanions of As(III). The adsorbent maintained a significant level of performance even after four cycles of adsorption. Thus, the developed MGO has the potential to be used for the abatement of arsenic pollution.
    Matched MeSH terms: Arsenic*
  12. Aryanto D, Zulkafli Othaman, Abd. Khamim Ismail, Amira Saryati Ameruddin
    In this research an atomic force microscopy (AFM) study on self-assembled In0.5Ga0.5As/GaAs quantum dots (QDs) was performed. Surface morphology of self-assembled In0.5Ga0.5As QDs changes with different growth time. Increasing growth time increased the dots size and decreased the dots density. In addiditon, self-assembled In0.5Ga0.5As QDs was grown on In0.1Ga0.9As underlying layer with different after-growth AsH3 flow time during cooling-down. The underlying layer caused lattice strain relaxation in the QDs on the surface. Increasing the period of AsH3 flow during cooling-down reduced the diameter of the dots and increased the density. The migration of groups III species in the growth of In0.5Ga0.5As/GaAs system was influenced by AsH3 flow during cooling-down period. This was due to the increase in surface population of active arsenic species. Underlying layer and the period of AsH3 flow during cooling-down are the two key factors in the fabrication of small and dense In0.5Ga0.5As QDs.
    Matched MeSH terms: Arsenic; Arsenicals
  13. Ghazali AR, Abdul Razak NE, Othman MS, Othman H, Ishak I, Lubis SH, et al.
    J Environ Public Health, 2012;2012:758349.
    PMID: 22536276 DOI: 10.1155/2012/758349
    Heavy metals, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. This study was conducted to determine the levels of cadmium, lead, and arsenic in nail samples from farmers at Muda Agricultural Development Authority (MADA), Kedah, Malaysia, and evaluate factors that can contribute to their accumulations. A total of 116 farmers participated in this study. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze concentration of heavy metals in the nail samples and questionnaires were given to participants to get demographic, health status, and their agricultural activities data. In this paper, the level of heavy metals was within the normal range and varies according to demographic factors. We found that there were significant correlations between working period with level of lead and arsenic (r=0.315 and r=0.242, resp., P<0.01) and age with lead level (r=0.175, P<0.05). Our findings suggested that agricultural activities could contribute to the accumulation of heavy metals in farmers. Hence, the control of environmental levels of and human exposure to these metals to prevent adverse health effects is still an important public health issue.
    Matched MeSH terms: Arsenic/metabolism*
  14. Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N
    Int J Phytoremediation, 2018 Jun 07;20(7):721-729.
    PMID: 29723047 DOI: 10.1080/15226514.2017.1413337
    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
    Matched MeSH terms: Arsenic*
  15. Yusof AM, Salleh S, Wood AK
    Biol Trace Elem Res, 1999;71-72:139-48.
    PMID: 10676488
    Speciation of arsenic and selenium was carried out on water samples taken from rivers used as water intake points in the vicinity of landfill areas used for land-based waste disposal system. Leachates from these landfill areas may contaminate the river water through underground seepage or overflowing, especially after a heavy downpour. Preconcentration of the chemical species was done using a mixture of ammonium pyrrolidinethiocarbamate-chloroform (APDTC-CHCl3). Because only the reduced forms of both arsenic and selenium species could be extracted by the preconcentrating mixture, suitable reducing agents such as 25% sodium thiosulfate for As(III) and 6M HCl for Se(IV) were used throughout the studies. Care was taken to exclude the interfering elements such as the alkali and alkali earth metals from the inorganic arsenic and selenium species by introducing 12% EDTA solution as the masking agent. The extracted mixture was irradiated in a thermal neutron flux of 4 x 10(12)/cm/s from a TRIGA Mk.II reactor at the Malaysia Institute of Nuclear Technology Research (MINT). Gamma rays of 559 keV and 297 keV from 76As and 75Se, respectively, were used in the quantitative determination of the inorganic species. Mixed standards of As(III) and Se(IV) used in the percentage efficiency procedure were prepared from salts of Analar grade. The water quality evaluation was viewed from the ratio of the inorganic species present.
    Matched MeSH terms: Arsenic/chemistry*
  16. Sakai N, Alsaad Z, Thuong NT, Shiota K, Yoneda M, Ali Mohd M
    Chemosphere, 2017 Oct;184:857-865.
    PMID: 28646768 DOI: 10.1016/j.chemosphere.2017.06.070
    Arsenic and 5 heavy metals (nickel, copper, zinc, cadmium and lead) were quantitated in surface water (n = 18) and soil/ore samples (n = 45) collected from 5 land uses (oil palm converted from forest, oil palm in peat swamp, bare land, quarry and forest) in the Selangor River basin by inductively coupled plasma mass spectrometry (ICP-MS). Geographic information system (GIS) was used as a spatial analytical tool to classify 4 land uses (forest, agriculture/peat, urban and bare land) from a satellite image taken by Landsat 8. Source profiling of the 6 elements was conducted to identify their occurrence, their distribution and the pollution source associated with the land use. The concentrations of arsenic, cadmium and lead were also analyzed in maternal blood (n = 99) and cord blood (n = 87) specimens from 136 pregnant women collected at the University of Malaya Medical Center for elucidating maternal exposure as well as maternal-to-fetal transfer. The source profiling identified that nickel and zinc were discharged from sewage and/or industrial effluents, and that lead was discharged from mining sites. Arsenic showed a site-specific pollution in tin-tungsten deposit areas, and the pollution source could be associated with arsenopyrite. The maternal blood levels of arsenic (0.82 ± 0.61 μg/dL), cadmium (0.15 ± 0.2 μg/dL) and lead (2.6 ± 2.1 μg/dL) were not significantly high compared to their acute toxicity levels, but could have attributable risks of chronic toxicity. Those in cord blood were significantly decreased in cadmium (0.06 ± 0.07 μg/dL) and lead (0.99 ± 1.2 μg/dL) but were equivalent in arsenic (0.82 ± 1.1 μg/dL) because of the different kinetics of maternal-to-fetal transfer.
    Matched MeSH terms: Arsenic/analysis; Arsenic/metabolism*
  17. Jaafar R, Omar I, Jidon AJ, Wan-Khamizar BW, Siti-Aishah BM, Sharifah-Noor-Akmal SH
    Med J Malaysia, 1993 Mar;48(1):86-92.
    PMID: 8341178
    The association of arsenical poisoning with the development of skin cancer is well-known. In Malaysia, arsenic has been shown to coexist with tin in tin-mining land. Our preliminary investigation has shown that the level of arsenic in well water from a tin-mining area is high. We report 3 patients with cutaneous lesions typical of chronic arsenical poisoning such as hyperpigmentation, keratoses and skin cancer. These patients have positive histories of previous domicility in tin-mining areas. We conclude that these patients developed chronic arsenical poisoning from drinking well water polluted with arsenic from the tin-mining soil.
    Matched MeSH terms: Arsenic Poisoning*
  18. Md Khudzari J, Wagiran H, Hossain I, Ibrahim N
    J Environ Radioact, 2013 Jan;115:1-5.
    PMID: 22846873 DOI: 10.1016/j.jenvrad.2012.05.013
    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations.
    Matched MeSH terms: Arsenic/analysis*
  19. Yajima I
    Nihon Eiseigaku Zasshi, 2017;72(1):49-54.
    PMID: 28154361 DOI: 10.1265/jjh.72.49
    Several experimental studies on hygiene have recently been performed and fieldwork studies are also important and essential tools. However, the implementation of experimental studies is insufficient compared with that of fieldwork studies on hygiene. Here, we show our well-balanced implementation of both fieldwork and experimental studies of toxic-element-mediated diseases including skin cancer and hearing loss. Since the pollution of drinking well water by toxic elements induces various diseases including skin cancer, we performed both fieldwork and experimental studies to determine the levels of toxic elements and the mechanisms behind the development of toxic-element-related diseases and to develop a novel remediation system. Our fieldwork studies in several countries including Bangladesh, Vietnam and Malaysia demonstrated that drinking well water was polluted with high concentrations of several toxic elements including arsenic, barium, iron and manganese. Our experimental studies using the data from our fieldwork studies demonstrated that these toxic elements caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system that adsorbs toxic elements from polluted drinking water. A well-balanced implementation of both fieldwork and experimental studies is important for the prediction, prevention and therapy of toxic-element-mediated diseases.
    Matched MeSH terms: Arsenic/adverse effects; Arsenic/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links