Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Zalina Rahmat, Ismail Bahari, Muhammad Samudi Yasir, Redzuwan Yahaya, Amran Ab. Majid
    MyJurnal
    Concentrations of Natural Occurring Radioactive Material (NORM) and terrestrial gamma radiation have been shown to be associated with certain lithology and soil types. An attempt was made to statistically predict and validate environmental gamma radiation dose rates based on limited number of actual field measurements using sodium iodide (NaI(Tl)) detector. Statistical analysis including the correlations between the actual and predicted dose were made based on 32 different lithology and soil type combinations. Results of field measurements, have shown that more than 50% of the predicted data were not significantly different from the actual measured data. The interpolation method in GIS was used to produce an isodose map based on the prediction equation. A correlation of multiple regression on the predicted versus lithology and soils dose rates gave relationships of DP = 0.35 DL + 0.82 DS – 0.02, r2 = 0.736. A predicted isodose map was subsequently plotted base on 4 dose rates classes, ranging from 0.1 – 0.3 μSvhr-1.
    Matched MeSH terms: Background Radiation
  2. Zaini Hamzah, Ahmad Saat, Mohammed Kassim
    MyJurnal
    Many studies were carried out throughout the world on radon measurement in water especially drinking water for it can cause problem to human health. This study is an attempt to measure the level of radon present in water collect from rivers and lakes. Data gathered from this study provides important information about radiation levels in water at selected sites, because radon gas is the largest contributor to natural radioactive radiation exposure to humans. Exposure to radon gas can cause lung cancer. Liquid scintillation counting (LSC) has been applied to determine the activity concentration of radon ( 222 Rn) in water. Water samples were collected from, ex-mining lake in Perak, Sok River in Kelantan, Tembeling River in Pahang. Water samples were prepared in polyethylene bottles mixed with liquid scintillator and stored for 3 weeks to allow 222 Rn and its progeny to reach the equilibrium, and the activity concentrations ranged from 0.24-1.27 Bq/L, and 0.029 – 0.155 Bq/L for radon and radium respectively.
    Matched MeSH terms: Background Radiation
  3. Yarima MH, Khandaker MU, Nadhiya A, Olatunji MA
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):359-362.
    PMID: 31089715 DOI: 10.1093/rpd/ncz115
    Uranium, thorium and potassium are the most abundant naturally occurring radioactive materials (NORMs) found in soils and other environmental media including foodstuffs. Since the human exposures to NORMs is an unavoidable phenomenon, in such a way that they can easily find their way to human being via food chain, detailed knowledge on their presence in foodstuffs is necessary to assess the radiation dose to the population. Thus, the present study concerns the assessment of natural radioactivity in maize, a staple foodstuff for Nigerian, via HPGe gamma-ray spectrometry. Activity concentrations (Bq/kg) in the maize samples were found to be in the range of 6.1 ± 0.6-8.2 ± 1.3, 2.2 ± 0.4-5.1 ± 0.7 and 288 ± 16-401 ± 24 for 226Ra, 232Th and 40K, respectively. Measured data for 226Ra and 232Th show below the world average values of 67 Bq/kg and 82 Bq/kg, respectively, while the activity of 40K exceeds the global average of 310 Bq/kg. The annual effective dose via the maize consumption was found to be far below the UNSCEAR recommended ingestion dose limit of 290 μSv/y, and the estimated lifetime cancer risk show lower than the ICRP (1991) cancer risk factor of 2.5 × 10-3 based on the additional annual dose limit of 1 mSv for general public, thus pose no adverse health risk to the Nigerian populace.
    Matched MeSH terms: Background Radiation*
  4. Tela Abba H, Wan Hassan WMS, Saleh MA, Aliyu AS, Ramli AT, Abdulsalam H
    Isotopes Environ Health Stud, 2018 Oct;54(5):522-534.
    PMID: 29847152 DOI: 10.1080/10256016.2018.1474879
    The Jos Plateau has been reported to have elevated levels of natural background radiation. A few earlier studies have measured the levels of natural radioactivity for specific locations in the area. Our interest is to investigate how geology of the study area influences the activity concentrations of natural radionuclides. Thus, the activity concentrations of terrestrial radionuclides in soil samples collected across the geological formations of the Jos Plateau were determined by gamma spectrometry technique. The mean activity concentrations of 226Ra, 232Th and 40K were found to exceed their corresponding world reference values of 35, 40 and 400 Bq kg-1, respectively. Data were compared using statistical methods, analysis of variance (ANOVA) and post hoc tests. The results revealed in some instances significant influences of geological types on the activity concentrations in the area. The spatial distribution maps of activity concentrations of 226Ra, 232Th and 40K were geostatistically interpolated by ordinary Kriging method using ArcGIS software.
    Matched MeSH terms: Background Radiation
  5. Sulaiman, I., Omar, M.
    MyJurnal
    The indoor and outdoor radon/thoron progenies concentrations and natural background radiation levels throughout Sarawak and Sabah were measured. The measurements were carried out at 234 locations in 40 towns in Sarawak and Sabah. The mean indoor and outdoor radon equilibrium equivalent concentrations (EEC) in Sarawak were found to be 1.2 Bqm-3 and 1.5 Bqm-3 respectively. In Sabah, the mean indoor and outdoor radon equilibrium equivalent concentrations were 1.7 Bqm-3. The mean indoor and outdoor thoron equilibrium equivalent concentrations of 0.4 Bqm-3 and 0.3Bqm-3 respectively, were the same for Sarawak and Sabah. The mean indoor and outdoor radiation levels of 46 nGyh-1 and 42 nGyh-1 in Sarawak were slightly lower than the respective values in Sabah, i.e. 53 nGyh-1 and 46 nGy h-1.
    Matched MeSH terms: Background Radiation
  6. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Background Radiation
  7. Siraz MMM, Roy D, Dewan MJ, Alam MS, A M J, Rashid MB, et al.
    Environ Monit Assess, 2023 Feb 10;195(3):382.
    PMID: 36759352 DOI: 10.1007/s10661-023-10921-7
    This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
    Matched MeSH terms: Background Radiation
  8. Sanusi MSM, Ramli AT, Hassan WMSW, Lee MH, Izham A, Said MN, et al.
    Environ Int, 2017 07;104:91-101.
    PMID: 28412010 DOI: 10.1016/j.envint.2017.01.009
    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh-1(156-392nGyh-1) and 4 times higher than the world average value. High radioactivity levels of238U (95±12Bqkg-1),232Th (191±23Bqkg-1,) and40K (727±130Bqkg-1) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy-1per man. The recommended ICRP reference level (1-20mSvy-1) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer.
    Matched MeSH terms: Background Radiation*
  9. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS
    J Environ Radioact, 2013 Oct;124:130-40.
    PMID: 23727880 DOI: 10.1016/j.jenvrad.2013.04.013
    Extensive environmental survey and measurements of gamma radioactivity in the soil samples collected from Segamat District were conducted. Two gamma detectors were used for the measurements of background radiation in the area and the results were used in the computation of the mean external radiation dose rate and mean weighted dose rate, which are 276 nGy h(-1) and 1.169 mSv y(-1), respectively. A high purity germanium (HPGe) detector was used in the assessment of activity concentrations of (232)Th, (226)Ra and (40)K. The results of the gamma spectrometry range from 11 ± 1 to 1210 ± 41 Bq kg(-1) for (232)Th, 12 ± 1 to 968 ± 27 Bq kg(-1) for (226)Ra, and 12 ± 2 to 2450 ± 86 Bq kg(-1) for (40)K. Gross alpha and gross beta activity concentrations range from 170 ± 50 to 4360 ± 170 Bq kg(-1) and 70 ± 20 to 4690 ± 90 Bq kg(-1), respectively. These results were used in the plotting of digital maps (using ARCGIS 9.3) for isodose. The results are compared with values giving in UNSCEAR 2000.
    Matched MeSH terms: Background Radiation
  10. Saleh MA, Ramli AT, Alajeramie Y, Suhairul H, Aliyu AS, Basri NA
    Radiat Prot Dosimetry, 2013 Sep;156(2):246-52.
    PMID: 23538891 DOI: 10.1093/rpd/nct061
    An extensive survey was carried out for gamma dose rates (GDRs) in the Mersing district, Johor, Malaysia. The average value of GDR measured in the district was found to be 140 nGy h(-1), in the range of 40-355 nGy h(-1). The mean weighted dose rate to the population, annual effective dose equivalent, collective effective dose equivalent, lifetime cancer risk were 0.836 mSv y(-1), 0.171 mSv, 1.18 × 10(1) man Sv y(-1) and 6.98 × 10(-4) Sv y, respectively. An isodose map was produced for the district. One way analysis of variance was used to test for differences due to different geological formations present in the Mersing District.
    Matched MeSH terms: Background Radiation*
  11. Ramli AT, Sahrone S, Wagiran H
    J Radiol Prot, 2005 Dec;25(4):435-50.
    PMID: 16340071
    Environmental terrestrial gamma radiation dose rates were measured throughout Melaka, Malaysia, over a period of two years, with the objective of establishing baseline data on the background radiation level. Results obtained are shown in tabular, graphic and cartographic form. The values of terrestrial gamma radiation dose rate vary significantly over different soil types and for different underlying geological characteristics present in the study area. The values ranged from 54 +/- 5 to 378 +/- 38 nGy h(-1). The highest terrestrial gamma dose rates were measured over soil types of granitic origin and in areas with underlying geological characteristics of an acid intrusive (undifferentiated) type. An isodose map of terrestrial gamma dose rate in Melaka was drawn by using the GIS application 'Arc View'. This was based on data collected using a NaI(Tl) scintillation detector survey meter. The measurements were taken at 542 locations. Three small 'hot spots' were found where the dose rates were more than 350 nGy h(-1). The mean dose rates in the main population areas in the mukims (parishes) of Bukit Katil, Sungai Udang, Batu Berendam, Bukit Baru and Bandar Melaka were 154 +/- 15, 161 +/- 16, 160 +/- 16, 175 +/- 18 and 176 +/- 18 nGy h(-1), respectively. The population-weighted mean dose rate throughout Melaka state is 172 +/- 17 nGy h(-1). This is lower than the geographical mean dose rate of 183 +/- 54 nGy h(-1). The lower value arises from the fact that most of the population lives in the central area of the state where the lithology is dominated by sedimentary rocks consisting of shale, mudstone, phyllite, slate, hornfels, sandstone and schist of Devonian origin which have lower associated dose rates. The mean annual effective dose to the population from outdoor terrestrial gamma radiation was estimated to be 0.21 mSv. This value is higher than the world average of 0.07 mSv.
    Matched MeSH terms: Background Radiation*
  12. Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, et al.
    Environ Res, 2024 Mar 01;244:118000.
    PMID: 38128601 DOI: 10.1016/j.envres.2023.118000
    The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
    Matched MeSH terms: Background Radiation
  13. Phuah CS, Che Abd Rahim Mohamed, Zaharuddin Ahmad
    Concentration of Ra-226 and Ra-228 activities in water and sediment samples were measured using the Liquid Scintillation Counter (LSC) and High Purity Germanium Gamma Spectrometry (HPGe). respectively. Concentrations of Ra-226 activity in sediment samples range from 18.93 Bg/ kg to 236.06 Bq/kg and for Ra-228 activity range from 12.59 Bg/kg to 410.60 Bq/kg. Meanwhile, concentrations of Ra-226 activity obtained in water samples range from 0.064 Bg/L to 0.199 Bq/L. These data indicate, that the distribution of Ra-228 and Ra-226 in the study area were varied from one sampling stations to another and is probably related to the contents of suspended particles.
    Penentuan kepekatan aktiviti Ra-226 dan Ra-228 dalam sampel air dan sedimen dilakukan masing-masing dengan Pembilang Sintilasi Cecair (LSC) dan Spektrometri Gamma Germanium Lampau Tulen (HPGe). Kepekatan aktiviti Ra-226 dalam sampel sedimen adalah berjulat dari 18.93 Bg/kg hingga 236.06 Bq/kg dan kepekatan aktiviti Ra-228 berjulat dari 12.59 Bg/kg hingga 410.60 Bq/kg. Kepekatan aktiviti Ra-226 dalam sampel air yang diperolehi pula berjulat dari 0.064 Bg/L hingga 0.199 Bq/L. Ini menunjukkan taburan Ra-228 dan Ra-226 di kawasan kajian adalah berubah mengikut lokasi kajian dan berkemungkinan dipengaruhi oleh sifat kandungan bahan terampai.
    Matched MeSH terms: Background Radiation
  14. Olatunji MA, Khandaker MU, Nwankwo VUJ, Idris AM
    Radiat Environ Biophys, 2022 Nov;61(4):597-608.
    PMID: 36175773 DOI: 10.1007/s00411-022-00993-3
    Proper documentation of baseline radiation data of different environments is an important step toward adequate environmental monitoring, and it provides quick means to quantitatively check and determine possible radionuclide contamination by anthropogenic sources. Besides, such documentation is useful for decision making processes, assessment of dose rates to the public, epidemiological studies, and environmental regulations. This review summarizes the results of studies conducted on radioactivity in Nigerian environments. For most soil samples, the levels of radioactivity are well within the world averages of 33, 45, and 420 Bq kg-1 for 226Ra, 232Th and 40K, respectively. Other soil samples from regions such as Abeokuta in the southwest, and Jos in the northcentral have been described as high background radiation areas with radioactivity values comparable with those obtained from known high background radiation areas such as the Odisha (formerly Orissa) coast in India (with values reported as 350, 2,825, and 180 Bq kg-1 for 238U/226Ra, 232Th, and 40K, respectively). In some parts of Nigeria, surface and underground water sources used for drinking and other purposes also present elevated levels of 226Ra above the world range of 0.01 to 0.1 Bq l-1 and the tolerable levels recommended by the World Health Organization and U.S. Environmental Protection Agency. Corresponding radiation doses due to measured radioactivities from different environments were estimated and compared with those reported in similar studies around the world. More so, the human and environmental health hazards that might be associated with the reported radioactivity in different environmental settings are discussed. The present report is expected to support authorities in developing appropriate regulations to protect the public from radiation exposure arising from environmental radioactivity. The report also examines other areas of consideration for future studies to ensure adequate radiation monitoring in Nigeria.
    Matched MeSH terms: Background Radiation
  15. Naidu J, Wong Zh, Palaniappan Sh, Ngiu ChS, Yaacob NY, Abdul Hamid H, et al.
    Asian Pac J Cancer Prev, 2017 04 01;18(4):933-939.
    PMID: 28545190
    Background and Aims: Patients with inflammatory bowel disease (IBD) are subjected to a large amount of ionizing
    radiation during the course of their illness. This may increase their risk of malignancy to a greater level than that due
    to the disease itself. In Caucasian patients with Crohn’s disease, this has been well documented and recommendations
    are in place to avoid high radiation imaging protocols. However, there are limited data available on radiation exposure
    in Asian IBD patients.We therefore sought to identify total radiation exposure and any differences between ethnically
    diverse ulcerative colitis (UC) and Crohn’s disease (CD) patients at our centre along with determining factors that may
    contribute to any variation. Methods: The cumulative effective dose (CED) was calculated retrospectively from 2000
    to 2014 using data from our online radiology database and patients’ medical records. Total CED in the IBD population
    was measured. High exposure was defined as a radiation dose of greater than 0.2mSv (equivalent to slightly less than
    ½ a year of background radiation). Results: A total of 112 cases of IBD (36 CD and 76 UC) were reviewed. Our CD
    patients were diagnosed at an earlier age than our UC cases (mean age 26.1 vs 45.7). The total CED in our IBD population
    was 8.53 (95% CI: 4.53-12.52). Patients with CD were exposed to significantly higher radiation compared to those
    with UC. The mean CED was 18.6 (7.30-29.87) and 3.65 (1.74-5.56, p=0.01) for CD and UC patients respectively. 2
    patients were diagnosed as having a malignancy during follow up with respective CED values of 1.76mSv and 10mSv.
    Conclusions: CD patients, particularly those with complicated disease, received a higher frequency of diagnostic
    imaging over a shorter period when compared to UC patients. Usage of low radiation imaging protocols should be
    encouraged in IBD patients to reduce their risk of consequent malignancy.
    Matched MeSH terms: Background Radiation
  16. Maxwell O, Wagiran H, Ibrahim N, Lee SK, Sabri S
    Radiat Prot Dosimetry, 2013 Dec;157(2):271-7.
    PMID: 23754832 DOI: 10.1093/rpd/nct140
    The purpose of this project is to evaluate the suitability of different sites as locations for obtaining underground water for consumption. The analysis of ²³⁸U, ²³²Th and ⁴⁰K from rock samples from each layer of borehole at a depth of ∼50 m at Site A borehole, S3L1-S3L6 in Gosa and 40 m at Site B borehole, S4L1-S4L5 in Lugbe, Abuja, north central Nigeria is presented. The gamma-ray spectrometry was carried out using a high-purity germanium detector coupled to a computer-based high-resolution multichannel analyzer. The activity concentrations at Site A borehole for ²³⁸U have a mean value of 26 ± 3, ranging from 23 ± 2 to 30 ± 3 Bq kg⁻¹, ²³²Th a mean value of 63 ± 5, ranging from 48 ± 4 to 76 ± 6 Bq kg⁻¹ and ⁴⁰K a mean value of 573 ± 72, ranging from 437 ± 56 to 821 ± 60 Bq kg⁻¹. The activity concentrations at Site B borehole for ²³⁸U have a mean value of 20 ± 2, ranging from 16 ± 2 to 23 ± 2 Bq kg⁻¹, ²³²Th a mean value of 46 ± 4, ranging from 43 ± 4 to 49 ± 4 Bq kg⁻¹, ⁴⁰K a mean value of 915 ± 116 and ranging from 817 ± 103 Bq kg⁻¹ to 1011 ± 128 Bq kg⁻¹. It is noted that the higher activity concentrations of ²³²Th and ²³⁸U are found in Site A at Gosa. Site B has lower radioactivity, and it is recommended that both sites are suitable for underground water consumption.
    Matched MeSH terms: Background Radiation*
  17. M. Fahmi M. Yusof, Nornashriah A. Rashid, Reduan Abdullah
    MyJurnal
    The glow curve in TLD-100 was compared by applying long preheat time, short preheat time
    techniques and without preheat technique before the TLD readout. Fading effect of the TLD signal
    upon certain storage time with long preheat time (100°C, 10 minutes using the oven) and short
    preheat time techniques (100°C, 10 seconds using the reader) were also studied. 15 TLD-100 chips
    were used with 3 of the TLD chips were used for measuring background radiation. 12 TLD chips
    were annealed, irradiated, preheated long and short preheat time techniques) and analyzed. The TL
    signals output from TLD chips of without preheated were used as the control. Two sets of data were
    taken using TLD chips irradiated with 6 MV and 10 MV photon beams. TL signal output was
    recorded the highest for short preheat time, followed by long preheat time and no preheating. The
    TL signal loss upon certain storage time was also reduced when short preheat time technique was
    applied. By applying long preheat time technique the low temperature peak in the glow curve was
    completely removed for both energies. Whereas, TLD chips exposed to 6 MV and with short preheat
    time technique the low temperature peak did not disappear completely but decreased in intensity as
    compared to the control data by 19.80%, 37.69%, 48.19% and 100% at 24, 48, 72 and 96 hours
    after exposure prior to readout, respectively. Meanwhile, for 10 MV photon beam with short
    preheat time, the small peak intensity was reduced by 19.58% for readout at 24 hours after
    irradiation and 100% for 48,72 and 96 hours delayed time prior to readout. It was observed that
    the TLD-100 was highly dependent on preheat heating time before readout. Short preheat time
    technique was able to reduce post irradiation fading of TLD-100 dosimeters
    Matched MeSH terms: Background Radiation
  18. Kolo MT, Khandaker MU, Amin YM, Abdullah WH
    PLoS One, 2016;11(6):e0158100.
    PMID: 27348624 DOI: 10.1371/journal.pone.0158100
    Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10-3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10-3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal.
    Matched MeSH terms: Background Radiation/adverse effects
  19. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
    Matched MeSH terms: Background Radiation*
  20. Ismail B, Teng IL, Muhammad Samudi Y
    Radiat Prot Dosimetry, 2011 Nov;147(4):600-7.
    PMID: 21266370 DOI: 10.1093/rpd/ncq577
    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.
    Matched MeSH terms: Background Radiation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links