Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Amjad N, Osman HA, Razak NA, Kassian J, Din J, bin Abdullah N
    World J Gastroenterol, 2010 Sep 21;16(35):4443-7.
    PMID: 20845512
    AIM: To study the presence of Helicobacter pylori (H. pylori) virulence factors and clinical outcome in H. pylori infected patients.

    METHODS: A prospective analysis of ninety nine H. pylori-positive patients who underwent endoscopy in our Endoscopy suite were included in this study. DNA was isolated from antral biopsy samples and the presence of cagA, iceA, and iceA2 genotypes were determined by polymerase chain reaction and a reverse hybridization technique. Screening for H. pylori infection was performed in all patients using the rapid urease test (CLO-Test).

    RESULTS: From a total of 326 patients who underwent endoscopy for upper gastrointestinal symptoms, 99 patients were determined to be H. pylori-positive. Peptic ulceration was seen in 33 patients (33%). The main virulence strain observed in this cohort was the cagA gene isolated in 43 patients. cagA was associated with peptic ulcer pathology in 39.5% (17/43) and in 28% (16/56) of non-ulcer patients. IceA1 was present in 29 patients (29%) and iceA2 in 15 patients (15%). Ulcer pathology was seen in 39% (11/29) of patients with iceA1, while 31% (22/70) had normal findings. The corresponding values for iceA2 were 33% (5/15) and 33% (28/84), respectively.

    CONCLUSION: Virulence factors were not common in our cohort. The incidence of factors cagA, iceA1 and iceA2 were very low although variations were noted in different ethnic groups.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics*
  2. Sabri MY, Zamri-Saad M, Mutalib AR, Israf DA, Muniandy N
    Vet Microbiol, 2000 Apr 04;73(1):13-23.
    PMID: 10731614
    The outer membrane proteins (OMP) were extracted from the P. haemolytica A2, A7 and A9 to determine their potential as immunogens and their capability for cross-protection. Sixty lambs of approximately 9 months old were divided into four main groups. Animals in Group 1 were vaccinated with 2ml vaccine containing 100microg/ml of the outer membrane proteins of P. haemolytica A2. Animals in Group 2 were similarly vaccinated with the OMPs of P. haemolytica A7 while Group 3 with OMPs of P. haemolytica A9. Animals in Group 4 were unvaccinated control. During the course of the study, serum was collected to evaluate the antibody levels toward each OMP. There appeared to be good immune responses. However, high antibody levels did not necessarily result in good protection of the animals, particularly against cross-infection with P. haemolytica A9 in animals vaccinated with the OMPs of P. haemolytica A2. It seemed that the antibody responses were more specific toward the homologous challenge but generally did not cross-protect against heterologous serotype challenge. However, the OMPs of P. haemolytica A7 produced good in vivo cross-protection and excellent correlations when good antibody responses against all serotypes led to successful reductions of the extent of lung lesions following homologous and heterologous challenge exposures. Thus, the OMPs of P. haemolytica A7 was effective in protecting animals against homologous and heterologous infection by live P. haemolytica A2, A7 and A9.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  3. Su YC, Wan KL, Mohamed R, Nathan S
    Vaccine, 2010 Jul 12;28(31):5005-11.
    PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022
    Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  4. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/chemistry
  5. Gebriel AM, Subramaniam G, Sekaran SD
    Trop Biomed, 2006 Dec;23(2):194-207.
    PMID: 17322822 MyJurnal
    The detection of leptospires in patient blood in the first week of the disease using PCR provides an early diagnostic tool. PCR using two sets of primers (G1/G2 and B64-I/B64-II) tested with samples seeded with 23 leptospiral strains from pathogenic and non-pathogenic strains was able to amplify leptospiral DNA from pathogenic strains only. Of the 39 antibody negative samples collected from patients suspected for leptospirosis, only 1 sample (2.6%) was PCR positive. Using LSSP-PCR, the G2 primers allowed the characterization of Leptopira species to 10 different genetic signatures which may have epidemiological value in determining species involved in outbreaks. Leptospiral outer membrane proteins from three strains were purified and reacted against patients sera and gave rise to different profiles for pathogenic and non-pathogenic strains. Lymphocytes of mice injected with OMPs proliferated and released IFN(-3) when stimulated in vitro using Leptospira OMP as antigens. This suggests that an immune response could be established using leptospiral OMPs as a putative vaccine. OMPs were also used in a Dot-ELISA to detect antibodies against Leptospira pathogens in humans.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  6. Ngeow YF, Hema V, Zakaria M, Lee CH, Ramachandran S
    Malays J Pathol, 1997 Dec;19(2):127-32.
    PMID: 10879253
    First-void urine samples collected from sexually transmitted diseases (STD) clinic patients were examined by a nested polymerase chain reaction (PCR) and a commercial enzyme immunoassay (IDEIA Chlamydia) for the diagnosis of Chlamydia trachomatis urethritis or cervicitis. The primers for the PCR amplified a target in the major outer membrane protein (MOMP) gene in C trachomatis while the IDEIA detected genus-specific chlamydial lipopolysaccharide. Discrepant results were resolved by retesting urine specimens with a second (plasmid-based) PCR and taking urethral or endocervical swab results into consideration. For 231 men (chlamydial prevalence 20.4%), the sensitivity, specificity, positive and negative predictive values were 59.6%, 99.5%, 96.6% and 90.6% for urine IDEIA, 68.1%, 99.5%, 97% and 92.4% for urethral swab IDEIA and 97.9%, 99.5%, 97.9% and 99.5% for urine PCR. The corresponding rates for 66 women (chlamydial prevalence 54.6%) were 19.4%, 100%, 100% and 50.8% for urine IDEIA, 86.1%, 96.7%, 96.9% and 85.3% for endocervical swab IDEIA and 91.7%, 93.3%, 94.3% and 90.3% for urine PCR. Hence, in a high prevalence population, the urine IDEIA was a suitable alternative to the male urethral swab IDEIA but significantly less sensitive than the endocervical swab IDEIA. The urine PCR was, however, much more sensitive than the urine IDEIA for both men and women and could replace the endocervical swab IDEIA for the diagnosis of chlamydial cervicitis.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/analysis
  7. Latifah I, Abdul Halim A, Rahmat MS, Nadia MF, Ubil ZE, Asmah H, et al.
    Malays J Pathol, 2017 08;39(2):161-166.
    PMID: 28866698 MyJurnal
    BACKGROUND: A study was conducted to confirm the status of rats as the carrier of pathogenic leptospira in Kuala Lumpur, Malaysia.

    METHOD: A total of 140 urine samples were collected from trapped rats. These samples were cultured in EMJH enriched media and 18 of these samples (12.9%) were found to be positive when observed under x40 by dark field microscope. Genomic DNA was extracted from all the 18 native isolates for PCR.

    RESULT: All the 18 isolates generated the expected 786 base pair band when the set of primers known to amplify LipL32 gene were utilized. These results showed that the primers were suitable to be used for the identification of pathogenic leptospira from the 18 rat samples.

    CONCLUSION: The sequencing of the PCR products and BLAST analysis performed on each representative isolates confirmed the pathogenic status of all these native isolates as the LipL32 gene was detected in all the Leptospira isolates. This indicates that the rats are carriers of the pathogenic leptospira in the study area, and therefore are of public health importance.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics*; Bacterial Outer Membrane Proteins/isolation & purification
  8. Lau KL, Ong EB, Zainudin ZF, Samian MR, Ismail A, Najimudin N
    J Gen Appl Microbiol, 2013;59(3):239-44.
    PMID: 23863294
    Matched MeSH terms: Bacterial Outer Membrane Proteins/biosynthesis*
  9. Hwa WE, Subramaniam G, Mansor MB, Yan OS, Gracie, Anbazhagan D, et al.
    Indian J Med Res, 2010 Apr;131:578-83.
    PMID: 20424311
    Carbapenem-resistant Acinetobacter spp. have gained increasing significance as opportunistic pathogens in hospitalized patients. Carbapenem resistance is often associated with the loss and/or decrease in outer membrane proteins (OMP) and overexpression of multidrug efflux systems. However, carbapenem-hydrolysing beta-lactamases of Ambler Class B (metallo-enzymes) and Ambler Class D (oxacillinases) have also been detected in Acinetobacter spp. In this study we have investigated the role of the iron regulated outer membrane protein (IROMPs) and the loss of a 29-kDa OMP in carbapenem resistance of Acinetobacter calcoaceticus.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/drug effects*; Bacterial Outer Membrane Proteins/physiology
  10. Bhutta ZA, Mansurali N
    Am J Trop Med Hyg, 1999 Oct;61(4):654-7.
    PMID: 10548305
    We evaluated the diagnostic sensitivity and specificity of two dot-enzyme-linked immunoassays (Typhidot and Typhidot-M; Malaysian Biodiagnostic Research SDN BHD, Kuala Lumpur, Malaysia), assessing IgG and IgM antibodies against the outer membrane protein (OMP) of Salmonella typhi, and the Widal test in comparison with blood culture in a consecutive group of children with suspected typhoid fever. Of 97 children with suspected typhoid fever, the disease was confirmed bacteriologically in 46 (47%), whereas 25 (26%) were considered to have typhoid fever on clinical grounds. An alternative diagnosis was made in 26 (27%). The Typhidot and Typhidot-M were superior to the Widal test in their diagnostic sensitivity and specificity, although values (sensitivity = 85-94% and specificity = 77-89%) were significantly lower than in other regional reports. The lower specificity of the Typhidot in our series may represent regional differences in the genomic structure and plasticity of the OMP of S. typhi and merits further evaluation of these tests in diverse geographic locations.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology
  11. Choo KE, Davis TM, Ismail A, Ong KH
    Am J Trop Med Hyg, 1997 Dec;57(6):656-9.
    PMID: 9430522
    The objective of this study was to investigate the longevity of positive dot enzyme immunosorbent assay (dot EIA) results for IgM and IgG to a Salmonella typhi outer membrane protein in Malaysian children with enteric fever. The patients were children one month to 12 years of age with clinical evidence of typhoid fever, positive blood or stool cultures for S. typhi, and/or a positive Widal test result who were admitted over a two-year period to General Hospital (Kota Bharu, Malaysia). These patients received standard inpatient treatment for enteric fever including chloramphenicol therapy for 14 days. Dot EIA tests were performed as part of clinical and laboratory assessments on admission, at two weeks, and then at 3, 6, 9, 12, 15, 18, and 21 months postdischarge. Assessment of the longevity of positive dot EIA IgM and IgG titers was done by Kaplan-Meier analysis. In 94 evaluable patients, 28% were dot EIA IgM positive but IgG negative on admission, 50% were both IgM and IgG positive, and 22% were IgM negative and IgG positive. Mean persistence of IgM dot EIA positivity was 2.6 months (95% confidence interval = 2.0-3.1 months) and that of IgG was 5.4 months (4.5-6.3 months). There were no significant differences between the three subgroups. Thus, positive IgM and IgG results determined by dot EIA within four and seven months, respectively, following documented or suspected enteric fever in a child from an endemic area should be interpreted with caution. In other clinical situations, the dot EIA remains a rapid and reliable aid to diagnosis.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/analysis; Bacterial Outer Membrane Proteins/immunology*
  12. Gunaletchumy SP, Seevasant I, Tan MH, Croft LJ, Mitchell HM, Goh KL, et al.
    Sci Rep, 2014 Dec 11;4:7431.
    PMID: 25503415 DOI: 10.1038/srep07431
    Helicobacter pylori infection results in diverse clinical conditions ranging from chronic gastritis and ulceration to gastric adenocarcinoma. Among the multiethnic population of Malaysia, Indians consistently have a higher H. pylori prevalence as compared with Chinese and Malays. Despite the high prevalence of H. pylori, Indians have a relatively low incidence of peptic ulcer disease and gastric cancer. In contrast, gastric cancer and peptic ulcer disease incidence is high in Chinese. H. pylori strains from Chinese strains predominantly belong to the hspEAsia subpopulation while Indian/Malay strains mainly belong to the hspIndia subpopulation. By comparing the genome of 27 Asian strains from different subpopulations, we identified six genes associated with risk of H. pylori-induced peptic ulcer disease and gastric cancer. This study serves as an important foundation for future studies aiming to understand the role of bacterial factors in H. pylori-induced gastro-duodenal diseases.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/chemistry
  13. Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, et al.
    Sci Rep, 2015 Nov 13;5:16441.
    PMID: 26563565 DOI: 10.1038/srep16441
    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/metabolism; Bacterial Outer Membrane Proteins/chemistry*
  14. Tan SY, Tan IK, Tan MF, Dutta A, Choo SW
    Sci Rep, 2016 10 31;6:36116.
    PMID: 27796355 DOI: 10.1038/srep36116
    On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/chemistry
  15. Hara Y, Mohamed R, Nathan S
    PLoS One, 2009 Aug 05;4(8):e6496.
    PMID: 19654871 DOI: 10.1371/journal.pone.0006496
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium's surface and secreted proteins are currently being evaluated as vaccine candidates.

    METHODOLOGY/PRINCIPAL FINDINGS: With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1x10(6) colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

    CONCLUSIONS/SIGNIFICANCE: We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  16. Harikrishnan H, Banga Singh KK, Ismail A
    PLoS One, 2017;12(8):e0182878.
    PMID: 28846684 DOI: 10.1371/journal.pone.0182878
    Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/metabolism
  17. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics
  18. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics
  19. Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, et al.
    Microbiologyopen, 2017 12;6(6).
    PMID: 29055967 DOI: 10.1002/mbo3.513
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/metabolism; Bacterial Outer Membrane Proteins/chemistry*
  20. Chung ELT, Abdullah FFJ, Marza AD, Saleh WMM, Ibrahim HH, Abba Y, et al.
    Microb Pathog, 2017 Jan;102:89-101.
    PMID: 27894962 DOI: 10.1016/j.micpath.2016.11.015
    The aim of this study was to investigate the clinico-pathology and haemato-biochemistry alterations in buffaloes inoculated with Pasteurella multocida type B:2 immunogen outer membrane protein via subcutaneous and oral routes. Nine buffalo heifers were divided equally into 3 treatment groups. Group 1 was inoculated orally with 10 mL of phosphate buffer saline (PBS); Group 2 and 3 were inoculated with 10 mL of outer membrane protein broth subcutaneously and orally respectively. Group 2 buffaloes showed typical haemorrhagic septicaemia clinical signs and were only able to survive for 72 h of the experiment. However, Group 3 buffaloes were able to survive throughout the stipulated time of 21 days of experiment. There were significant differences (p  0.05) in edema between groups except for the lung. This study was a proof that oral route infection of Pasteurella multocida type B:2 immunogen outer membrane protein can be used to stimulate host cell.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links