Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Alassiri M, Lai JY, Ch'ng ACW, Choong YS, Alanazi A, Lim TS
    Sci Rep, 2023 Aug 21;13(1):13627.
    PMID: 37604859 DOI: 10.1038/s41598-023-40630-7
    Antibody phage display is a key tool for the development of monoclonal antibodies against various targets. However, the development of anti-peptide antibodies is a challenging process due to the small size of peptides for binding. This makes anchoring of peptides a preferred approach for panning experiments. A common approach is by using streptavidin as the anchor protein to present biotinylated peptides for panning. Here, we propose the use of recombinant expression of the target peptide and an immunogenic protein as a fusion for panning. The peptide inhibitor of trans-endothelial migration (PEPITEM) peptide sequence was fused to the Mycobacterium tuberculosis (Mtb) α-crystalline (AC) as an anchor protein. The panning process was carried out by subtractive selection of the antibody library against the AC protein first, followed by binding to the library to PEPITEM fused AC (PEPI-AC). A unique monoclonal scFv antibodies with good specificity were identified. In conclusion, the use of an alternative anchor protein to present the peptide sequence coupled with subtractive panning allows for the identification of unique monoclonal antibodies against a peptide target.
    Matched MeSH terms: Bacteriophages*
  2. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK
    BMC Microbiol, 2016 Jun 27;16(1):127.
    PMID: 27349637 DOI: 10.1186/s12866-016-0746-z
    BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.

    RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.

    CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines.

    Matched MeSH terms: Bacteriophages/genetics*
  3. Camacho F, Sarmiento ME, Reyes F, Kim L, Huggett J, Lepore M, et al.
    Int J Mycobacteriol, 2016 06;5(2):120-7.
    PMID: 27242221 DOI: 10.1016/j.ijmyco.2015.12.002
    OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes.

    METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL.

    RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex.

    CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.

    Matched MeSH terms: Bacteriophages/genetics; Bacteriophages/metabolism
  4. Ho KL, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2003 Jan;69(1):27-32.
    PMID: 12436474
    M13 phages that display random disulfide constrained heptapeptides on their gpIII proteins were used to select for high affinity ligands to hepatitis B core antigen (HBcAg). Phages bearing the amino acid sequences C-WSFFSNI-C and C-WPFWGPW-C were isolated, and a binding assay in solution showed that these phages bind tightly to full-length and truncated HBcAg with K D rel values less than 25 nM, which is at least 10 orders of magnitude higher than phage carrying the peptide sequence LLGRMK selected from a linear peptide library. Both the phages that display the constrained peptides were inhibited from binding to HBcAg particles by a monoclonal antibody that binds specifically to the immunodominant region of the particles. A synthetic heptapeptide with the amino acid sequence WSFFSNI derived from one of the fusion peptides inhibits the binding of large surface antigen (L-HBsAg) to core particles with an IC50 value of 12 +/- 2 microM. This study has identified a smaller peptide with a greater inhibitory effect on L-HBsAg-HBcAg association.
    Matched MeSH terms: Bacteriophages/metabolism
  5. Davidson RM, Hasan NA, de Moura VC, Duarte RS, Jackson M, Strong M
    Infect Genet Evol, 2013 Dec;20:292-7.
    PMID: 24055961 DOI: 10.1016/j.meegid.2013.09.012
    Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents.
    Matched MeSH terms: Bacteriophages/genetics
  6. Nathan S, Aziz DH, Mahadi NM
    Curr Microbiol, 2006 Nov;53(5):412-5.
    PMID: 17036210
    We constructed recombinant phage particles displaying the Bacillus thuringiensis Cry1Ba4 active toxin using the pfUSE5 and pComb3X phagemid vectors. The recombinant phage particles were screened and evaluated for displayed biologically active Cry1Ba4 toxin against the target insect larvae. Concurrent expression of Cry1Ba4 protoxin was carried out using the pETBlue -2 plasmid expression vector in Escherichia coli Tuner (DE3)pLacI and the protoxin was successfully expressed at a size of 129 kDa. In the bioassay, 3.30 mg crude extract of Cry1Ba4 protoxin, 9.35 x 10(9) TU and 7.70 x 10(9) TU of induced recombinant phage particles carrying Cry1Ba4 active toxin displayed on pComb3X and pFUSE5, respectively, demonstrated mortality of greater than 85% against Plutella xylostella (third-instar) within 48 hours. Thus, we have successfully displayed the Cry1Ba4 activated toxin on the surface of a phage and demonstrated toxicity towards larvae.
    Matched MeSH terms: Bacteriophages/genetics
  7. Ahmad S, Hair-Bejo M, Hussein EA, Awad EA, Saeed MI, Liew PS, et al.
    Open Vet J, 2022;12(6):839-850.
    PMID: 36650863 DOI: 10.5455/OVJ.2022.v12.i6.8
    BACKGROUND: The studies about Salmonella infection in newly hatched chicks were not extensive.

    AIM: The objective of this study was to determine the pathogenicity of Salmonella enterica subspecies enterica serovar Enteritidis (SE) phage type (PT) 1 in one-day-old specific pathogen-free (SPF) chicks.

    METHODS: Seventy, one-day-old SPF chicks, were divided into SE group (30 chicks), mortality group (10 chicks), both orally inoculated (1.0 ml) with SE PT1 (1 × 108 colony-forming unit per 1.0 ml), and one control group (30 chicks). The chicks were sacrificed at 6 and 12 hours, and days 1, 2, 3, 5, 7, 10, 14, and 21 post-inoculation (pi). Samples were collected for bacterial isolation, histological examination, and ultrastructural examination.

    RESULTS: Starting from day 2 pi, the body weight in the SE group significantly (p < 0.05) decreased. The SE isolation percentages from the liver, spleen, mid-intestinal content, cecal content, cecal tonsil, blood, and cloacal swab were 0.73, 0.77, 0.33, 0.33, 0.36, 0.40, and 0.30, respectively. The isolation percentage in the liver was significantly (p < 0.05) higher than the blood and cloacal swab. The villi heights and crypt depths in the SE group were significantly (p < 0.05) greater and smaller, respectively. Ultrastructurally, erosion and necrosis were observed in the microvilli of the cecal tonsil. The bacteria were engulfed by macrophages at the interepithelial clefts of the M-like M cells.

    CONCLUSION: It was concluded that the inoculation of SE PT 1 in one-day-old chicks caused a systemic infection with diarrhea, a decrease in the body weight and villi height in the duodenum, jejunum, and ileum, and high bacterial loading in the liver with mild gross and histological lesions of organs, erosion, and necrosis of microvilli and low mortality. The bacteria entered the body system from the intestinal tract through the interepithelial clefts of the M-like M cells of the cecal tonsil.

    Matched MeSH terms: Bacteriophages*
  8. Yee SY, Fong NY, Fong GT, Tak OJ, Hui GT, Su Ming Y
    Int J Environ Health Res, 2006 Feb;16(1):59-68.
    PMID: 16507481
    Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.
    Matched MeSH terms: Bacteriophages
  9. Ch'ng ACW, Konthur Z, Lim TS
    Methods Mol Biol, 2023;2702:291-313.
    PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15
    Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
    Matched MeSH terms: Bacteriophages*
  10. Ohashi M, Terayama T, Ushioda H, Kudoh Y, Tsuno M, Sakai S
    Microbiol. Immunol., 1981;25(6):613-6.
    PMID: 7278707
    Matched MeSH terms: Bacteriophages/physiology*
  11. Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AA
    PeerJ, 2022;10:e12648.
    PMID: 35251775 DOI: 10.7717/peerj.12648
    BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA.

    METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88.

    RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88.

    CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.

    Matched MeSH terms: Bacteriophages*
  12. Assafiri O, Song AA, Tan GH, Hanish I, Hashim AM, Yusoff K
    PLoS One, 2021;16(1):e0245354.
    PMID: 33418559 DOI: 10.1371/journal.pone.0245354
    Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have been associated with nosocomial infections. The increased incidence of multiple drug-resistant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumoniae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudoviriales (Order) based on morphological appearance. Whole genome analysis of UPM2146 showed that its genome comprises 160,795 bp encoding for 214 putative open reading frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviridae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of 1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection (MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover, we show that the phage is safe to be used in the treatment against K. pneumoniae infections in the zebrafish model.
    Matched MeSH terms: Bacteriophages/genetics; Bacteriophages/physiology*
  13. Chan WT, Espinosa M, Yeo CC
    Front Mol Biosci, 2016;3:9.
    PMID: 27047942 DOI: 10.3389/fmolb.2016.00009
    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
    Matched MeSH terms: Bacteriophages
  14. Al-Fendi A, Shueb RH, Ravichandran M, Yean CY
    J Basic Microbiol, 2014 Oct;54(10):1036-43.
    PMID: 24532381 DOI: 10.1002/jobm.201300458
    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
    Matched MeSH terms: Bacteriophages/isolation & purification*; Bacteriophages/physiology*; Bacteriophages/ultrastructure; Bacteriophages/chemistry
  15. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H, et al.
    Front Microbiol, 2021;12:616548.
    PMID: 33776954 DOI: 10.3389/fmicb.2021.616548
    Vibrio parahaemolyticus is a foodborne pathogen that is frequently isolated from a variety of seafood. To control this pathogenic Vibrio spp., the implementation of bacteriophages in aquaculture and food industries have shown a promising alternative to antibiotics. In this study, six bacteriophages isolated from the seafood samples demonstrated a narrow host range specificity that infecting only the V. parahaemolyticus strains. Morphological analysis revealed that bacteriophages Vp33, Vp22, Vp21, and Vp02 belong to the Podoviridae family, while bacteriophages Vp08 and Vp11 were categorized into the Siphoviridae family. All bacteriophages were composed of DNA genome and showed distinctive restriction fragment length polymorphism. The optimal MOI for bacteriophage propagation was determined to be 0.001 to 1. One-step growth curve revealed that the latent period ranged from 10 to 20 min, and the burst size of bacteriophage was approximately 17 to 51 PFU/cell. The influence of temperature and pH levels on the stability of bacteriophages showed that all bacteriophages were optimally stable over a wide range of temperatures and pH levels. In vitro lytic activity of all bacteriophages demonstrated to have a significant effect against V. parahaemolyticus. Besides, the application of a bacteriophage cocktail instead of a single bacteriophage suspension was observed to have a better efficiency to control the growth of V. parahaemolyticus. Results from this study provided a basic understanding of the physiological and biological properties of the isolated bacteriophages before it can be readily used as a biocontrol agent against the growth of V. parahaemolyticus.
    Matched MeSH terms: Bacteriophages
  16. Lal TM, Sano M, Ransangan J
    J Aquat Anim Health, 2017 Mar;29(1):26-30.
    PMID: 28166465 DOI: 10.1080/08997659.2016.1249578
    The causative agent responsible for vibriosis in tropical fish aquaculture, Vibrio harveyi, has become a major bacterial pathogen. Studies suggest that this bacterium has developed resistance to antibiotics commonly used in aquaculture. In view of this situation and the requirement for the proposed postantibiotic era, bacteriophage therapy seems to be a promising control strategy for fish vibriosis. In this study, a lytic Vibrio phage VhKM4 belonging to a member of large, marine Myoviridae was successfully isolated. It exhibited bacteriolysis to both V. harveyi VHJR7 and V. parahaemolyticus ATCC 17802. The latent period of the VhKM4 phage was recorded at 60 min. It also recorded average burst size of approximately 52 plaque-forming units per infected cell. A strong bacteriolytic activity at low multiplicity of infection of 0.01 indicates the effectiveness of this large marine myovirid against fish pathogenic strain of V. harveyi VHJR7. Received June 16, 2016; accepted October 7, 2016.
    Matched MeSH terms: Bacteriophages
  17. Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG
    Front Microbiol, 2019;10:1758.
    PMID: 31447806 DOI: 10.3389/fmicb.2019.01758
    The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
    Matched MeSH terms: Bacteriophages
  18. Lim TS, Chan SK
    Curr Pharm Des, 2016;22(43):6480-6489.
    PMID: 27669969 DOI: 10.2174/1381612822666160923111924
    BACKGROUND: Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries.

    METHODS: Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection.

    RESULTS: This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases.

    CONCLUSION: We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future.

    Matched MeSH terms: Bacteriophages/genetics*
  19. Goh XT, Chua KH, Kee BP, Lim YAL
    Trop Med Int Health, 2020 02;25(2):172-185.
    PMID: 31733137 DOI: 10.1111/tmi.13348
    OBJECTIVE: Plasmodium knowlesi, the fifth human malaria parasite, has caused mortality in humans. We aimed to identify P. knowlesi novel binding peptides through a random linear dodecapeptide phage display targeting the 19-kDa fragment of Merozoite Surface Protein-1 protein.

    METHODS: rPkMSP-119 protein was heterologously expressed using Expresso® Solubility and Expression Screening System and competent E. cloni® 10G cells according to protocol. Three rounds of biopanning were performed on purified rPkMSP-119 to identify binding peptides towards rPkMSP-119 using Ph.D.™-12 random phage display library. Binding sites of the identified peptides to PkMSP-119 were in silico predicted using the CABS-dock web server.

    RESULTS: Four phage peptide variants that bound to PkMSP-119 were identified after three rounds of biopanning, namely Pkd1, Pkd2, Pkd3 and Pkd4. The sequences of both Pkd1 and Pkd2 consist of a large number of histidine residues. Pkd1 showed positive binding signal with 6.1× vs. BSA control. Docking results showed that Pkd1 and Pkd2 were ideal binding peptides for PkMSP-119 .

    CONCLUSION: We identified two novel binding peptides of PkMSP-119 , Pkd1 (HFPFHHHKLRAH) and Pkd2 (HPMHMLHKRQHG), through phage display. They provide a valuable starting point for the development of novel therapeutics.

    Matched MeSH terms: Bacteriophages
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links