Displaying publications 1 - 20 of 169 in total

Abstract:
Sort:
  1. Seow SR, Mat S, Ahmad Azam A, Rajab NF, Safinar Ismail I, Singh DKA, et al.
    Expert Rev Mol Med, 2024 Apr 12;26:e8.
    PMID: 38606593 DOI: 10.1017/erm.2024.7
    Osteoarthritis (OA) commonly affects the knee and hip joints and accounts for 19.3% of disability-adjusted life years and years lived with disability worldwide (Refs , ). Early management is important in order to avoid disability uphold quality of life (Ref. ). However, a lack of awareness of subclinical and early symptomatic stages of OA often hampers early management (Ref. ). Moreover, late diagnosis of OA among those with severe disease, at a stage when OA management becomes more complicated is common (Refs , , , ). Established risk factors for the development and progression of OA include increasing age, female, history of trauma and obesity (Ref. ). Recent studies have also drawn a link between OA and metabolic syndrome, which is characterized by insulin resistance, dyslipidaemia and hypertension (Refs , ).
    Matched MeSH terms: Biomarkers/metabolism
  2. Horie Y, Chihaya Y, Yap CK, Ríos JM, Ramaswamy BR, Uaciquete D
    PMID: 38218565 DOI: 10.1016/j.cbpc.2024.109836
    Phthalate and non-phthalate plasticizers are used in polymer materials, such as plastic and rubber. It has recently been found that diisobutyl adipate (DIBA), which is considered an environmentally safe non-phthalate plasticizer, potentially acts as a thyroid disruptor in fish. Here, we investigated the sexual hormone effects of DIBA based on the expression levels of genes that respond to endocrine disruption and sexual hormone activity in the livers and gonads, and on gonadal sexual differentiation in Japanese medaka. Compared with the control group, the mRNA expression of chgH, vtg1, vtg2, and esr1 was significantly suppressed in the livers of DIBA exposed XX individuals. Furthermore, the mRNA expression of gsdf was significantly upregulated and downregulated in the gonads of XX and XY individuals, respectively. The mRNA expressions of esr1 and esr2b were significantly suppressed by DIBA exposure in the gonads of both XX and XY individuals. These observations suggest that DIBA has potential androgenic activity in Japanese medaka. However, normal testes and ovaries were observed in respective XY and XX medaka after DIBA exposure; therefore, these results suggest that DIBA may have weak androgenic activity.
    Matched MeSH terms: Biomarkers/metabolism
  3. Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, et al.
    Pathol Res Pract, 2024 Jan;253:155037.
    PMID: 38160482 DOI: 10.1016/j.prp.2023.155037
    Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
    Matched MeSH terms: Biomarkers/metabolism
  4. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
    Matched MeSH terms: Biomarkers/metabolism
  5. Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3099-3107.
    PMID: 37774061 DOI: 10.31557/APJCP.2023.24.9.3099
    BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts.

    AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.

    METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.

    RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).

    CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.

    Matched MeSH terms: Biomarkers/metabolism
  6. Ooi TC, Ahmad A, Rajab NF, Sharif R
    Nutrients, 2023 Jul 18;15(14).
    PMID: 37513601 DOI: 10.3390/nu15143184
    Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.
    Matched MeSH terms: Biomarkers/metabolism
  7. Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, et al.
    Molecules, 2023 Jul 17;28(14).
    PMID: 37513325 DOI: 10.3390/molecules28145453
    Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
    Matched MeSH terms: Biomarkers/metabolism
  8. Zia S, Saleem M, Asif M, Hussain K, Butt BZ
    Inflammopharmacology, 2022 Dec;30(6):2211-2227.
    PMID: 36223063 DOI: 10.1007/s10787-022-01048-1
    Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p 
    Matched MeSH terms: Biomarkers/metabolism
  9. Abboud MM, Al-Rawashde FA, Al-Zayadneh EM
    J Asthma, 2022 Nov;59(11):2154-2161.
    PMID: 34855555 DOI: 10.1080/02770903.2021.2008426
    BACKGROUNDS: The development of asthma is highly affected by exposure to exogenous and endogenous oxidative molecules, but the impact of this exposure on the pathophysiology of asthma has received little attention.

    OBJECTIVES: Evaluating group of selective oxidative stress markers as a tool in the management of asthma disease.

    METHODS: In comparison with matched healthy controls, levels of the oxidant and antioxidant markers: lipid peroxidation malondialdehyde (MDA), Total glutathione (tGSH), Uric acid (UA), Glutathione peroxidase (GPx), Catalase (CAT) superoxide dismutase (SOD), and Total antioxidant capacity (TAC) were assessed in serum and saliva of different asthma groups.

    RESULTS: All oxidative markers in serum and saliva of asthma patients showed significant alterations from normal healthy controls (P  0.05).

    CONCLUSION: Determination of the oxidative markers GPx, CAT, UA in serum or saliva can distinguish asthma from healthy states. The serum levels of UA and TAC are highly effective in monitoring asthma severity, while the salivary GPx, CAT, UA, MDA are beneficial in the management of childhood asthma. Discrimination of the age factor between asthma groups can be achieved by testing GPx, SOD, TAC in serum.

    Matched MeSH terms: Biomarkers/metabolism
  10. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Biomarkers/metabolism
  11. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
    Matched MeSH terms: Biomarkers/metabolism
  12. Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, et al.
    Clin Transl Sci, 2021 Jul;14(4):1476-1489.
    PMID: 33742775 DOI: 10.1111/cts.13009
    N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
    Matched MeSH terms: Biomarkers/metabolism
  13. Tan TL, Kang CW, Ooi KS, Tan ST, Ahmad NS, Nasuruddin DN, et al.
    Sci Rep, 2021 05 31;11(1):11369.
    PMID: 34059757 DOI: 10.1038/s41598-021-90894-0
    Early bacterial infection (BI) identification in resource-limiting Emergency Departments (ED) is challenging, especially in low- and middle-income counties (LMIC). Misdiagnosis predisposes to antibiotic overuse and propagates antimicrobial resistance. This study evaluates new emerging biomarkers, secretory phospholipase A2 group IIA (sPLA2-IIA) and compares with other biomarkers on their performance characteristic of BI detection in Malaysia, an LMIC. A prospective cohort study was conducted involving 151 consecutive patients admitted to the ED. A single measurement was taken upon patient arrival in ED and was analysed for serum levels of sPLA2-IIA, high-sensitive C-reactive protein (CRP), procalcitonin (PCT), neutrophil percentage (N%), and lactate. All biomarkers' performance was compared for the outcomes using area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. The performance of sPLA2-IIA (AUROC 0.93 [95% CI: 0.89-0.97]; Sn 80% [95% CI: 72-87]; Sp 94% [95% CI: 81-89]) was the highest among all. It was comparable with high-sensitive CRP (AUROC 0.93 [95% CI: 0.88-0.97]; Sn 75% [95% CI: 66-83]; Sp 91 [95% CI: 77-98]) but had a higher Sn and Sp. The sPLA2-IIA was also found superior to N%, PCT, and lactate. This finding suggested sPLA2-IIA was recommended biomarkers for BI detection in LMIC.
    Matched MeSH terms: Biomarkers/metabolism
  14. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Biomarkers/metabolism
  15. Abushaala NM, Elfituri AM, Zulkifli SZ
    Open Vet J, 2021 02 08;11(1):112-120.
    PMID: 33898292 DOI: 10.4314/ovj.v11i1.17
    Background: Several types of research have been recently carried out on the biological effects of TBTs, including investigations of genitals in invertebrates in response to exposure to TBTs in marine water.

    Aim: The objective of this research was to investigate the acute effects of tributyltin chloride (TBTCl) on gonads in the adult stage of Artemia salina by use normal histology and immunohistochemistry (IHC) (Caspase 3 and HSP70) to see specific apoptosis markers.

    Methods: After exposure of A. salina to different concentrations of TBTCl (25, 50, 100, 200, and 300 ng.l-1), 50 adult A. salina (25 male and 25 female) were selected randomly from each concentration to histologically study the gonads. The gonad tissue was sectioned (5 μm) and some slides were stained with hematoxylin and eosin and others were stained with IHC avidin-biotin complex, and were examined under a light microscope.

    Results: The results showed significant differences (p < 0.05) in histological lesions between different concentrations of TBTCl. The histological lesions in the testis and ovary section were undifferentiated cells, degenerating yolk globules, and follicle cells enveloping the oocyte which was then compared with control tissue, and these effects were found to be increased in females more than in males with the highest concentration of TBTCl. Immunohistochemistry (IHC) showed that positive immunostaining was observed in the testis and ovary as brownish deposits to Caspase 3 and HSP70 antibody after exposure to TBTCl, while the testis and ovary section in control tissue had no immunoreactivity to Caspase 3 and HSP70 antibody; these effects were profoundly increased with the highest concentration of TBTCl in females more than in males. Finally, the histological lesions and IHC (Caspase 3 and HSP70) revealed that the apoptosis and immune system stress of A. salina gonad tissue damage in females were more sensitive to TBTCl toxicity as compared to white males.

    Conclusion: In general, the present study aimed to observe the effects TBTCl on A. salina gonads by using histological sections and IHC (Caspase 3 and HSP70), which were evaluated for the first time and have been proven to possess an important function in apoptosis marker and immune system stress in Artemia. Finally, the specific mechanisms through which TBTCl affects A. salina Caspase 3 and HSP70 expression need further investigation.

    Matched MeSH terms: Biomarkers/metabolism
  16. Angelopoulou E, Paudel YN, Piperi C
    Cell Mol Life Sci, 2021 Feb;78(4):1445-1453.
    PMID: 33052436 DOI: 10.1007/s00018-020-03673-x
    The exact etiology of Parkinson's disease (PD) remains obscure, lacking effective diagnostic and prognostic biomarkers. In search of novel molecular factors that may contribute to PD pathogenesis, emerging evidence highlights the multifunctional role of the calcium-binding protein S100B that is widely expressed in the brain and predominantly in astrocytes. Preclinical evidence points towards the possible time-specific contributing role of S100B in the pathogenesis of neurodegenerative disorders including PD, mainly by regulating neuroinflammation and dopamine metabolism. Although existing clinical evidence presents some contradictions, estimation of S100B in the serum and cerebrospinal fluid seems to hold a great promise as a potential PD biomarker, particularly regarding the severity of motor and non-motor PD symptoms. Furthermore, given the recent development of S100B inhibitors that are able to cross the blood brain barrier, novel opportunities are arising in the research field of PD therapeutics. In this review, we provide an update on recent advances in the implication of S100B protein in the pathogenesis of PD and discuss relevant studies investigating the biomarker potential of S100B in PD, aiming to shed more light on clinical targeting approaches related to this incurable disorder.
    Matched MeSH terms: Biomarkers/metabolism
  17. Deo P, Fenech M, Dhillon VS
    Mutat Res Rev Mutat Res, 2021 01 29;787:108369.
    PMID: 34083054 DOI: 10.1016/j.mrrev.2021.108369
    Micronucleus assay has been used as a biomarker of DNA damage, chromosomal instability, cancer risk and accelerated aging. In this review, a meta-analysis was performed to assess the association between micronuclei (MNi) and diseases with increased advanced glycation end products (AGEs) and HbA1c. The review identified eight studies with 632 subjects with disease and 547 controls. The Mean Ratio (MRi) for AGE levels (MRi = 2.92, 95 %CI: 2.06-4.13, P < 0.00001) and HbA1c levels (MRi = 1.32, 95 %CI: 1.12-1.56, P = 0.001) were significantly higher in the disease group compared to healthy controls. The meta-analysis indicated that the overall estimates of MRi for MNi was 1.83 (95 %CI: 1.38-2.42, p < 0.0001) in subjects with disease compared to controls. Significant increases in MRi for MNi were also observed in the following sub-groups: subjects with disease for elevated AGEs (MRi = 1.62, 95 %CI: 1.12-2.35, P = 0.01), elevated HbA1c (MRi = 2.13, 95 %CI: 1.33-3.39, P = 0.002), lymphocytes MNi (MRi = 1.74, 95 %CI: 1.29-2.33, P = 0.0003), exfoliated buccal cells MNi (MRi = 2.86, 95 %CI: 1.19-6.87, P = 0.02), type 2 diabetes mellitus (T2DM) (MRi = 1.99, 95 %CI: 1.17-3.39, P = 0.01), chronic renal disease (MRi = 1.68, 95 %CI: 1.18-2.38, P = 0.004) and other disease groups (MRi = 2.52, 95 %CI: 1.28-4.96, P = 0.008). The results of this review suggest that MNi could be used as a biomarker of DNA damage and chromosomal instability in degenerative disease where increased AGEs and HbA1c are implicated. The lack of heterogeneity for MN frequency when considered either for all studies or subgroup strengthened the MRi of the meta-analysis. However, the lack of significant association between MRi for MNi and MRi for AGEs or HbA1c indicates that the case-control studies investigated may be confounded by other variables. Thus, larger studies with long term AGE exposure is warranted to further understand the role of MN formation in the initiation and progression of diseases caused by excessive glycation.
    Matched MeSH terms: Biomarkers/metabolism*
  18. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Biomarkers/metabolism
  19. Kazmi I, Alharbi KS, Al-Abbasi FA, Almalki WH, G SK, Yasmeen A, et al.
    Crit Rev Eukaryot Gene Expr, 2021;31(2):89-95.
    PMID: 34347983 DOI: 10.1615/CritRevEukaryotGeneExpr.2021037996
    Among various epithelial-to-mesenchymal transition (EMT)-related transcription factors (TFs), altered expression levels of Snail-1, Snail-2/Slug, Twist, and ZEB1 have shown a significant association in different cancers having a higher risk of metastasis. However, their role in the circulation of endometriosis patients is not well understood. Hence, the present study was designed to evaluate the crucial role of these TFs in defining the molecular pathogenesis for endometriosis progression and differentiation from control subjects. The qualitative and quantitative expression analysis of Snail-1, Snail-2/Slug, Twist, and ZEB1 were analyzed in peripheral blood samples of 75 different stages of endometriosis patients and compared with 50 control subjects. Total RNA was extracted and converted into complementary DNA (cDNA) for relative quantification of each gene transcript using SYBRGreen-based reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The Livak method of relative quantification was used for calculating the fold change in each TF compared with endogenous control. All four selected TFs showed significantly upregulated expression levels in endometriosis patients compared with control subjects. A three-fold increase was observed for Snail-1 (p = 0.0001), and a two-fold increase was observed for Snail-2 (p = 0.01), Twist (p = 0.0002), and ZEB1 (p = 0.001) in stage III and IV compared with stage I and II of endometriosis patients. The present study revealed that EMT-related TFs play a crucial role in the pathogenesis and differentiating different stages of endometriosis patients through expression analysis of specific molecular cascades using non-invasive tools.
    Matched MeSH terms: Biomarkers/metabolism
  20. Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N
    Inflammopharmacology, 2020 Dec;28(6):1599-1622.
    PMID: 32588370 DOI: 10.1007/s10787-020-00733-3
    Centella asiatica is claimed to have a neuroprotective effect; however, its ability to protect the cerebrum against damage in diabetes has never been identified. The aims were to identify the possibility that C. asiatica ameliorates inflammation, oxidative stress, and apoptosis in the cerebrum in diabetes. C. asiatica leave aqueous extract (C. asiatica) (50, 100, and 200 mg/kg/b.w.) were given to diabetic rats for 28 days. Changes in rats' body weight, food and water intakes, and insulin and FBG levels were monitored. Following sacrificed, cerebrum was harvested and subjected for histological, biochemical, and molecular biological analyses. The results revealed treatment with C. asiatica was able to ameliorate the loss in body weight, the increase in food and water intakes, the decrease in insulin, and the increase in FBG levels in diabetic rats. Additionally, histopathological changes in the cerebrum and levels of p38, ERK, JNK, cytosolic Nrf2, Keap-1, LPO, RAGE, and AGE levels decreased; however, PI3K, AKT, IR, IRS, GLUT-1, nuclear Nrf2, Nqo-1, Ho-1, and anti-oxidative enzymes (SOD, CAT, and GPx) levels increased in diabetic rats receiving C. asiatica. Furthermore, C. asiatica treatment also caused cerebral inflammation and apoptosis to decrease as indicated by decreased inflammatory markers (cytosolic NF-κB p65, p-Ikkβ, Ikkβ, iNOS, COX-2, TNF-α, IL-6, and IL-1β), decreased pro-apoptosis markers (Casp-3, 9, and Bax), but increased anti-apoptosis marker, Bcl-2. Activity level of Na+/K+, Mg2+, and Ca2+-ATPases in the cerebrum also increased by C. asiatica treatment. Conclusions: C. asiatica treatment helps to prevent cerebral damage and maintain near normal cerebral function in diabetes.
    Matched MeSH terms: Biomarkers/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links