Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Siddiqui MW, Homa F, Nayyer MA, Ghatak A, Yousuf B, Aftab MA, et al.
    J Food Sci Technol, 2020 Jun;57(6):2010-2016.
    PMID: 32431327 DOI: 10.1007/s13197-019-04233-3
    Though fresh-cut products save our time, but they are very much prone to enzymatic browning that drastically affects product's quality and marketability. Drumstick pods are considered as super food due to high nutritional contents. However, the fresh-cut pods are prone to brown discoloration. The enzyme activities promote the softening and cut-surface browning of pods, thus deteriorates their texture, decreases consumer appeal and shortens the shelf life. So, we aimed to assess the effect of citric (1%) and ascorbic (1%) acid treatments on quality attributes of fresh-cut drumsticks at 3-d interval during storage (5 ± 1 °C). In general there was an increase in lignin and quinone contents, while phenolic content was decreased during storage. However, samples subjected to ascorbic acid dip had higher phenolic content, lower rate of lignin formation, and reduced membrane permeability. Enzyme activities (polyphenol oxidase and peroxidase) were found to increase during storage, however, samples treated with ascorbic acid showed lower activities than that of the control and citric acid treated samples. The reduced enzyme activities resulted in the reduced browning incidence and maintained the quality. Therefore, postharvest dip of fresh-cut drumstick in to ascorbic acid (1%) could be suggested to increase the shelf life with reduced browning during low temperature storage.
    Matched MeSH terms: Catechol Oxidase
  2. Nurhuda, H.H., Maskat, M.Y., Mamot, S., Afiq, J., Aminah, A.
    MyJurnal
    Rambutan (Nephelium lappaceum) peel is a potential source of antioxidant. As rambutan is a seasonal fruit, a proper heat treatment prior to storage is necessary. Thus, this study was conducted to determine the effect of water and steam blanchings on browning enzymes and antioxidant activities of rambutan peel extracts. Rambutan from the variety of ‘Anak Sekolah’ were peeled and the peel was blanched in boiling water for 0, 2.5, 5 min and by autoclaving for 0, 5, 10 and 15 min. The residual peroxidase (POD) and polyphenoloxidase (PPO) activities, antioxidant activity (2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity), total polyphenol content (TPC) and peel extract colour were determined. The results showed that both water and steam blanchings significantly reduced (p < 0.05) POD and PPO activities. The results also indicated that the increase in the blanching period did not significantly reduce the enzyme activities further. In terms of antioxidant activity, the thermal pretreatment caused no significant difference in the contents of phenolic compounds, as well as the antioxidant capacity of the final product.
    Matched MeSH terms: Catechol Oxidase
  3. Wong, C. W., Angel Lee, P. L.
    MyJurnal
    The inhibitory effect of onion extract on cassava leaf polyphenol oxidase was investigated. The polyphenol oxidase from cassava leaves was strongly inhibited by various anti-browning agents such as L-ascorbic acid and L-cysteine. The percentage of inhibition increased with the increased of anti-browning agents concentrations. The addition of heated onion extract exhibited a stronger inhibitory effect on cassava leaf polyphenol oxidase than the fresh onion extract. The highest percentage of inhibition was exhibited with heated onion extract in the presence of glucose and glycine, which was 87.18%. The onion extract inhibited the cassava leaf polyphenol oxidase non-competitively.
    Matched MeSH terms: Catechol Oxidase
  4. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
    Matched MeSH terms: Catechol Oxidase/chemistry
  5. Onsa GH, bin Saari N, Selamat J, Bakar J
    J Agric Food Chem, 2000 Oct;48(10):5041-5.
    PMID: 11052775
    Latent polyphenol oxidase (LPPO), an enzyme responsible for the browning reaction of sago starches during processing and storage, was investigated. The enzyme was effectively extracted and partially purified from the pith using combinations of nonionic detergents. With Triton X-114 and a temperature-induced phase partitioning method, the enzyme showed a recovery of 70% and purification of 4. 1-fold. Native PAGE analysis of the partially purified LPPO revealed three activity bands when stained with catechol and two bands with pyrogallol. The molecular masses of the enzymes were estimated by SDS-PAGE to be 37, 45, and 53 kDa. The enzyme showed optimum pH values of 4.5 with 4-methylcatechol as a substrate and 7.5 with pyrogallol. The LPPO was highly reactive toward diphenols and triphenols. The activity of the enzyme was greatly enhanced in the presence of trypsin, SDS, ethanol, and linoleic acid.
    Matched MeSH terms: Catechol Oxidase/metabolism*; Catechol Oxidase/chemistry
  6. Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcazar JL
    Fish Shellfish Immunol, 2014 Jan;36(1):68-74.
    PMID: 24161773 DOI: 10.1016/j.fsi.2013.10.007
    In this study, vegetative cell suspensions of two Bacillus subtilis strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU ml(-1) in the rearing water of shrimp (Litopenaeus vannamei) for eight weeks. Both probiotic groups showed a significant reduction of ammonia, nitrite and nitrate ions under in vitro and in vivo conditions. In comparison to untreated control group, final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and digestive enzymatic activity were significantly greater in the BM5 and BM8 groups. Significant differences for survival were recorded in the BM8 group as compared to the control. Eight weeks after the start of experiment, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 80%, whereas cumulative mortality of the shrimp that had been given probiotics was 36.7% with MB8 and 50% with MB5. Subsequently, real-time RT-PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan- binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was only significantly up-regulated in the BM5 group compared to the BM8 and control groups. These results suggest that administration of B. subtilis strains in the rearing water confers beneficial effects for shrimp aquaculture, considering water quality, growth performance, digestive enzymatic activity, immune response and disease resistance.
    Matched MeSH terms: Catechol Oxidase/genetics; Catechol Oxidase/immunology
  7. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Jul 15;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
    Matched MeSH terms: Catechol Oxidase/metabolism
  8. Ma TH, Benzie JA, He JG, Sun CB, Chan SF
    Dev Comp Immunol, 2014 May;44(1):163-72.
    PMID: 24345607 DOI: 10.1016/j.dci.2013.12.007
    One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system.
    Matched MeSH terms: Catechol Oxidase/metabolism*
  9. Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM
    Food Chem, 2014 Jan 1;142:121-8.
    PMID: 24001821 DOI: 10.1016/j.foodchem.2013.07.040
    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.
    Matched MeSH terms: Catechol Oxidase/metabolism; Catechol Oxidase/chemistry*
  10. Teoh LS, Lasekan O, Adzahan NM, Hashim N
    J Food Sci Technol, 2016 Jul;53(7):3035-3042.
    PMID: 27765974
    In this work, potato slices were exposed to different doses of UV-C irradiation (i.e. 2.28, 6.84, 11.41, and 13.68 kJ m(-2)) with or without pretreatment [i.e. ascorbic acid and calcium chloride (AACCl) dip] and stored at 4 ± 1 °C. Changes in enzymatic activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), as well as total phenolic content (TPC) were investigated after 0, 3, 7 and 10 days of storage. Results showed that untreated and UV-C treated potato slices at 13.68 kJ m(-2) dosage level showed significantly higher PPO, POD and PAL activities. Conversely, untreated potato slices showed the lowest TPC during storage period. Potato slices subjected to AACCl dip plus UV-C at 6.84 kJ m(-2) produced lower PPO, POD and PAL activities, as well as maintained a high TPC during storage.
    Matched MeSH terms: Catechol Oxidase
  11. Kashif Sarfraz Abbasi, Tariq Masud, Abdul Qayyum, Sami Ullah Khan, Shabbar Abbas, Jenks M
    Sains Malaysiana, 2016;45:677-688.
    Potatoes are usually stored under low temperatures for sprout prevention and to ensure their continuous supply. Low
    temperature sweetening in potato is the major temperature related disorder being faced by the growers and is also
    known to be associated with variety specific storage temperature. The present study aimed at identifying the appropriate
    storage temperature for the premium potato variety Lady Rosetta with special reference to the changes in its quality
    attributes, that is weight loss, total sugars, starch, ascorbic acids, total phenolic contents, radical scavenging activity,
    enzymatic activities and potato chip color. The selected potato variety was stored under different temperature (5, 15 and
    25o
    C) regimes to identify appropriate storage temperature. Our results showed significant variations in the tested quality
    attributes in response to different storage temperatures. Storage at 5o
    C maintained tuber dormancy up to 126 days,
    however, found associated with increased sugar accumulation (2.32 g/100 g), rapid starch depletion (13.25 g/100 g) and
    poor post processing performance (L-value, 52.00). In contrast, potato storage at 15o
    C retained lower sugar contents
    (1.33 g/100g) and superior chip color (L-value, 59.33) till the end of storage. However, they were found associated with
    the increased polyphenol oxidase (38.47 U/g f.w) and peroxidase (15.25 U/100 g f.w) activities as compare to those
    potatoes stored at 5o
    C during the same storage period. Storage life of potato tubers at 25o
    C was significantly reduced
    due to dormancy break on 84th day and subsequent starch degradation (15.29 g/100 g) increased sugar accumulation
    (1.32 g/100 g) and increased polyphenol oxidase (79.89 U/g f.w) and peroxidase activities (40.69 U/100 g f.w). Our
    results showed that potato variety Lady
    Matched MeSH terms: Catechol Oxidase
  12. Noranizan, M., Pean, L. F., Li, J. W., Aadil, R. M., Ahmad, T., Rosli, S. Z., et al.
    MyJurnal
    The present work investigated the impact of several juice extraction methods (blender,
    centrifugal juicer, and slow juicer) and thermal pasteurisation (72°C, 15 s) on the different
    properties [physicochemical, polyphenol oxidase (PPO) activity, and functional] of
    Clinacanthus nutans juice mix during storage (28 d, 4°C). Regardless of juicing technique, all
    juices had similar colour and antioxidants [tested using 2,2-diphenyl-1-picrylhydrazyl
    (DPPH) and ferric reducing antioxidant power (FRAP) methods]. The juices also had similar
    PPO activity and sensory acceptance in terms of colour, aroma, flavour, mouthfeel, and
    overall acceptability. The blender yielded juice with higher pH, soluble solids, and relative
    viscosity than other methods. The slow juicer was the best at retaining ascorbic acid (39.33 ±
    3.06 mg/100 mL), while the blender was best at retaining phenolic compounds (11.82 ± 0.12
    mg gallic acid equivalents/100 mL) and chlorophyll (6.95 ± 0.31 μg/mL). Pasteurisation
    negatively affected the colour, functional properties, and sensory characteristics (colour,
    aroma, flavour, and mouthfeel) of the juice.
    Matched MeSH terms: Catechol Oxidase
  13. Aslam R, Alam MS, Ali A, Tao Y, Manickam S
    Ultrason Sonochem, 2023 Jan;92:106268.
    PMID: 36543045 DOI: 10.1016/j.ultsonch.2022.106268
    The enzymatic browning induced in amla juice due to the high activity of polyphenol oxidase (PPO) and peroxidase (POD) is one of the critical issues faced by the industry. The present study assessed the suitability of non-thermal, high-intensity ultrasound (US) on the inactivation of PPO and POD in fresh Indian Gooseberry juice. Ultrasonic waves, using a 6 mm titanium alloy probe were irradiated in the juice at a maximum power of 455 W and frequency of 20 kHz. The subsequent effects on biochemical attributes were studied using response surface methodology. Inactivation rates of 90.72 % and 73.18 %, respectively, for PPO and POD enzymes, were observed at the highest US intensity and exposure time. Numerical optimisation using the three-factor, three-level Box-Behnken design suggested that an optimum process at 70 % (energy density: 1610 Wcm-2) pulsed at 5 s on and 5 s off for 7 min 30 s resulted in PPO and POD inactivation of the order of 76.42 % and 64.57 % respectively. At these experimental conditions, the optimized levels of biochemical attributes i.e., ascorbic acid (738.50 mg/100 mL), total phenols (17.10 mg/mL), DPPH antioxidant activity (58.47 %), tannins (7.11 µg/mL), colour change (ΔE = 9.04) and flavonoids (6.14 mg/mL) were achieved. The overall statistical models were significant for all the responses except for reducing sugars. Furthermore, the approximation equations for individual responses indicated that the goodness of fit was adequate (R2 > 0.90). The results suggested that ultrasound is a suitable processing technique for amla juice stabilisation compared to thermal treatments that result in the loss of quality.
    Matched MeSH terms: Catechol Oxidase
  14. Amna Shoaib, Arshad Javaid, Nighat Sana
    Sains Malaysiana, 2017;46:1693-1700.
    Collar rot of chili (Capsicum annuum L.) is a very destructive disease caused by a soil-borne fungal pathogen Sclerotium rolfsii Sacc. Generally, chemical fungicides are used to combat the menace but this practice is being discouraged because of health and environmental concerns. In the present study, an alternative environment friendly strategy was used to manage this disease by using farmyard manure (FYM) and two commercial biofertilizers namely Biopower and Feng Shou. S. rolfsii inoculated pot soil was amended with 1% and 2% FYM and the two commercial biofertilizers. Inoculation of soil with S. rolfsii only (positive control) resulted in the highest disease incidence (73%) and plant mortality (60%). Biopower and Feng Shou application reduced disease incidence to 20% and 7%, respectively and plant mortality to 0%. Likewise, 1% and 2% FYM amendment reduced disease incidence to 33% and plant mortality to 26% and 7%, respectively. Under biotic stress of S. rolfsii, FYM and biofertilizers applications, either alone or in combination, significantly enhanced root and shoot growth over positive control. S. rolfsii inoculation significantly increased peroxidase and polyphenol oxidase activities in chili plants which were further increased by application of either of the two biofertilizers. The present study concludes that biofertilizers Biopower and Feng Shou alone or in combination with 2% FYM can be effectively utilized to manage southern blight of chili.
    Matched MeSH terms: Catechol Oxidase
  15. Qudsieh HY, Yusof S, Osman A, Rahman RA
    J Agric Food Chem, 2002 Mar 13;50(6):1615-8.
    PMID: 11879045
    A study was conducted to determine the effect of sugarcane maturation on the contents of chlorophyll, tannin, and polyphenol oxidase (PPO) activity and on color change of sugarcane juice. The maturation period of the cane studied was between 3 and 10 months after planting. Different parts of the cane, namely, the top, middle, and bottom portions, were analyzed. Results obtained indicated that there were significant (P < 0.01) decreases in total chlorophyll a and b and tannin contents during maturity followed by slower rates of decrease of both parameters at the end of maturity stages. There were no significant differences (P > 0.05) in chlorophyll and tannin contents between the middle and bottom portions. On the other hand, the top portion of the stem had a significantly (P < 0.01) lower concentration of chlorophyll and a significantly (P < 0.01) higher content of tannin. PPO activity of sugarcane juice was determined using chlorogenic acid as a substrate. There was a highly significant difference (P < 0.01) in PPO activity of cane juice during maturity. PPO activity was high at the early development stage, decreased during maturation, and then remained relatively constant at the end of maturity. PPO activity was higher when chlorogenic acid was used as substrate. There were also significant differences (P < 0.01) in juice color (L*, a*, b* values) from different portions at different maturity stages. At the early stages, the color of extracted juice was dark, and then the juice turned to yellowish green during maturity. The decrease in green color or the increase in the yellow color could be associated with the decline in chlorophyll. The overall color change (DeltaE) at maturity indicated that the color of the middle and bottom portions was lower than that of the top portion.
    Matched MeSH terms: Catechol Oxidase/metabolism*
  16. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322227 DOI: 10.3390/molecules21060780
    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
    Matched MeSH terms: Catechol Oxidase/metabolism*; Catechol Oxidase/chemistry
  17. Zaini NA, Osman A, Hamid AA, Ebrahimpour A, Saari N
    Food Chem, 2013 Jan 15;136(2):407-14.
    PMID: 23122078 DOI: 10.1016/j.foodchem.2012.08.034
    Membrane-bound polyphenoloxidase (mPPO) an oxidative enzyme which is responsible for the undesirable browning reaction in Snake fruit (Salacca zalacca (Gaertn.) Voss) was investigated. The enzyme was extracted using a non-ionic detergent (Triton X-114), followed by temperature-induced phase partitioning technique which resulted in two separate layers (detergent-poor phase at the upper layer and detergent-rich phase at the lower layer). The upper detergent-poor phase extract was subsequently fractionated by 40-80% ammonium sulfate and chromatographed on HiTrap Phenyl Sepharose and Superdex 200 HR 10/30. The mPPO was purified to 14.1 folds with a recovery of 12.35%. A single prominent protein band appeared on native-PAGE and SDS-PAGE implying that the mPPO is a monomeric protein with estimated molecular weight of 38kDa. Characterization study showed that mPPO from Snake fruit was optimally active at pH 6.5, temperature 30°C and active towards diphenols as substrates. The K(m) and V(max) values were calculated to be 5.46 mM and 0.98 U/ml/min, respectively, when catechol was used as substrate. Among the chemical inhibitors tested, l-cysteine showed the best inhibitory effect, with an IC(50) of 1.3 ± 0.002 mM followed by ascorbic acid (1.5 ± 0.06 mM), glutathione (1.5 ± 0.07 mM), EDTA (100 ± 0.02 mM) and citric acid (186 ± 0.16 mM).
    Matched MeSH terms: Catechol Oxidase/isolation & purification*; Catechol Oxidase/chemistry*
  18. Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, et al.
    Mol Biol Rep, 2021 Apr;48(4):3285-3301.
    PMID: 33880673 DOI: 10.1007/s11033-021-06321-0
    Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
    Matched MeSH terms: Catechol Oxidase/genetics; Catechol Oxidase/metabolism*
  19. Sulaiman A, Farid M, Silva FV
    Food Sci Technol Int, 2017 Jun;23(4):293-309.
    PMID: 28595485 DOI: 10.1177/1082013216685485
    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day - 1, respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.
    Matched MeSH terms: Catechol Oxidase
  20. Bhat R, Stamminger R
    Food Sci Technol Int, 2015 Jul;21(5):354-63.
    PMID: 24867944 DOI: 10.1177/1082013214536708
    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice.
    Matched MeSH terms: Catechol Oxidase/metabolism; Catechol Oxidase/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links