Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Nasharudin MIH, Siew SW, Ahmad HF, Mahmud N
    Mol Biol Rep, 2024 Apr 11;51(1):503.
    PMID: 38600404 DOI: 10.1007/s11033-024-09492-8
    BACKGROUND: Komagataeibacter nataicola (K. nataicola) is a gram-negative acetic acid bacterium that produces natural bacterial cellulose (BC) as a fermentation product under acidic conditions. The goal of this work was to study the complete genome of K. nataicola and gain insight into the functional genes in K. nataicola that are responsible for BC synthesis in acidic environments.

    METHODS AND RESULT: The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis.

    CONCLUSION: A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.

    Matched MeSH terms: Cellulose/metabolism
  2. Zailan MZ, Salleh SM, Abdullah S, Yaakub H
    Trop Anim Health Prod, 2023 Nov 10;55(6):402.
    PMID: 37950132 DOI: 10.1007/s11250-023-03817-8
    This study aimed to evaluate the effect of feeding P. pulmonarius-treated empty fruit bunch (FTEFB) on the nutrient intakes, digestibility, milk yield and milk profiles of lactating Saanen goats. A total of nine lactating Saanen goats were used in an incomplete cross-over experimental design. The balanced dietary treatments contain different replacement levels of Napier grass with FTEFB at 0% (0-FT), 25% (25-FT) and 50% (50-FT). The FTEFB contained crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) at 4.10, 94.6, 70.8 and 19.4% DM, respectively. The replacement of FTEFB in 25-FT did not alter dry matter, NDF, hemicellulose, ADL, ether extract and gross energy intakes when compared to the control fed group (0-FT). The ADF and cellulose intake was higher in 25-FT than in the others (P  0.05). There are no differences in milk fatty profiles between dietary treatments (P > 0.05), except for OCFA. Goat fed with 25-FT had the lowest OCFA (P 
    Matched MeSH terms: Cellulose/metabolism
  3. Tan MCY, Zakaria MR, Liew KJ, Chong CS
    Arch Microbiol, 2023 Jul 07;205(8):278.
    PMID: 37420023 DOI: 10.1007/s00203-023-03617-6
    Hahella is a genus that has not been well-studied, with only two identified species. The potential of this genus to produce cellulases is yet to be fully explored. The present study isolated Hahella sp. CR1 from mangrove soil in Tanjung Piai National Park, Malaysia, and performed whole genome sequencing (WGS) using NovaSeq 6000. The final assembled genome consists of 62 contigs, 7,106,771 bp, a GC ratio of 53.5%, and encoded for 6,397 genes. The CR1 strain exhibited the highest similarity with Hahella sp. HN01 compared to other available genomes, where the ANI, dDDH, AAI, and POCP were 97.04%, 75.2%, 97.95%, and 91.0%, respectively. In addition, the CAZymes analysis identified 88 GTs, 54 GHs, 11 CEs, 7 AAs, 2 PLs, and 48 CBMs in the genome of strain CR1. Among these proteins, 11 are related to cellulose degradation. The cellulases produced from strain CR1 were characterized and demonstrated optimal activity at 60 ℃, pH 7.0, and 15% (w/v) sodium chloride. The enzyme was activated by K+, Fe2+, Mg2+, Co2+, and Tween 40. Furthermore, cellulases from strain CR1 improved the saccharification efficiency of a commercial cellulase blend on the tested agricultural wastes, including empty fruit bunch, coconut husk, and sugarcane bagasse. This study provides new insights into the cellulases produced by strain CR1 and their potential to be used in lignocellulosic biomass pre-treatment.
    Matched MeSH terms: Cellulose/metabolism
  4. Ismail KSK, Matano Y, Sakihama Y, Inokuma K, Nambu Y, Hasunuma T, et al.
    Bioresour Technol, 2022 Jan;343:126071.
    PMID: 34606923 DOI: 10.1016/j.biortech.2021.126071
    One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.
    Matched MeSH terms: Cellulose/metabolism
  5. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al.
    Int J Mol Sci, 2021 Nov 30;22(23).
    PMID: 34884787 DOI: 10.3390/ijms222312984
    Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
    Matched MeSH terms: Cellulose/metabolism*
  6. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Cellulose/metabolism
  7. Hafid HS, Omar FN, Zhu J, Wakisaka M
    Carbohydr Polym, 2021 May 15;260:117789.
    PMID: 33712137 DOI: 10.1016/j.carbpol.2021.117789
    Cellulose was extracted from rice husk (RH) using an integrated delignification process using alkaline treatment and acid hydrolysis (concentrated HNO3) for lignocellulosic biomass dissolution. Cellulose yield and quality were assessed through analysis of lignocellulosic content, thermogravimetric, functional group, X-ray diffraction, and surface morphology. HNO3 treatment showed an increment (2.01-fold) in the cellulose content and some enhancement in the crystallinity of cellulose (up to 40.8%). A slight increase was observed in thermal properties from 334.6 °C to 339.3 °C. Economic analysis showed chlorine extraction produce higher cellulose recovery (58%) as compared to HNO3 (26.7%) with the total cost of operation using HNO3 was double compared to chlorine extraction. The economic feasibility of HNO3 can be improved using various progress in the pre-treatment process, chemical recycling and cellulose recovery process since adopting it is crucial for environmental sustainability.
    Matched MeSH terms: Cellulose/metabolism
  8. Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, et al.
    Mol Biol Rep, 2021 Apr;48(4):3285-3301.
    PMID: 33880673 DOI: 10.1007/s11033-021-06321-0
    Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
    Matched MeSH terms: Cellulose/metabolism
  9. Nur-Nazratul FMY, Rakib MRM, Zailan MZ, Yaakub H
    PLoS One, 2021;16(9):e0258065.
    PMID: 34591932 DOI: 10.1371/journal.pone.0258065
    The changes in lignocellulosic biomass composition and in vitro rumen digestibility of oil palm empty fruit bunch (OPEFB) after pre-treatment with the fungus Ganoderma lucidum were evaluated. The results demonstrated that the pre-treatment for 2-12 weeks has gradually degraded the OPEFB in a time-dependent manner; whereby lignin, cellulose, and hemicellulose were respectively degraded by 41.0, 20.5, and 26.7% at the end of the incubation period. The findings were corroborated using the physical examination of the OPEFB by scanning electron microscopy. Moreover, the OPEFB pre-treated for 12 weeks has shown the highest in vitro digestibility of dry (77.20%) and organic (69.78%) matter, where they were enhanced by 104.07 and 96.29%, respectively, as compared to the untreated control. The enhancement in the in vitro ruminal digestibility was negatively correlated with the lignin content in the OPEFB. Therefore, biologically delignified OPEFB with G. lucidum fungal culture pre-treatment have the potential to be utilized as one of the ingredients for the development of a novel ruminant forage.
    Matched MeSH terms: Cellulose/metabolism*
  10. Abdul Karim MH, Lam MQ, Chen SJ, Yahya A, Shahir S, Shamsir MS, et al.
    Arch Microbiol, 2020 Nov;202(9):2591-2597.
    PMID: 32607725 DOI: 10.1007/s00203-020-01967-z
    To date, the genus Parvularcula consists of 6 species and no potential application of this genus was reported. Current study presents the genome sequence of Parvularcula flava strain NH6-79 T and its cellulolytic enzyme analysis. The assembled draft genome of strain NH6-79 T consists of 9 contigs and 7 scaffolds with 3.68 Mbp in size and GC content of 59.87%. From a total of 3,465 genes predicted, 96 of them are annotated as glycoside hydrolases (GHs). Within these GHs, 20 encoded genes are related to cellulosic biomass degradation, including 12 endoglucanases (5 GH10, 4 GH5, and 3 GH51), 2 exoglucanases (GH9) and 6 β-glucosidases (GH3). In addition, highest relative enzyme activities (endoglucanase, exoglucanase, and β-glucosidase) were observed at 27th hour when the strain was cultured in the carboxymethyl cellulose/Avicel®-containing medium for 45 h. The combination of genome analysis with experimental studies indicated the ability of strain NH6-79 T to produce extracellular endoglucanase, exoglucanase, and β-glucosidase. These findings suggest the potential of Parvularcula flava strain NH6-79 T in cellulose-containing biomass degradation and that the strain could be used in cellulosic biorefining process.
    Matched MeSH terms: Cellulose/metabolism
  11. Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Jun 03;25(11).
    PMID: 32503356 DOI: 10.3390/molecules25112607
    Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
    Matched MeSH terms: Cellulose/metabolism*
  12. Lee FH, Wan SY, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, et al.
    Int J Mol Sci, 2019 Oct 09;20(20).
    PMID: 31600952 DOI: 10.3390/ijms20204979
    Biotransformation via solid state fermentation (SSF) mediated by microorganisms is a promising approach to produce useful products from agricultural biomass. Lactic acid bacteria (LAB) that are commonly found in fermented foods have been shown to exhibit extracellular proteolytic, β-glucosidase, β-mannosidase, and β-mannanase activities. Therefore, extracellular proteolytic, cellulolytic, and hemicellulolytic enzyme activities of seven Lactobacillus plantarum strains (a prominent species of LAB) isolated from Malaysian foods were compared in this study. The biotransformation of palm kernel cake (PKC) biomass mediated by selected L. plantarum strains was subsequently conducted. The results obtained in this study exhibited the studied L. plantarum strains produced versatile multi extracellular hydrolytic enzyme activities that were active from acidic to alkaline pH conditions. The highest total score of extracellular hydrolytic enzyme activities were recorded by L. plantarum RI11, L. plantarum RG11, and L. plantarum RG14. Therefore, they were selected for the subsequent biotransformation of PKC biomass via SSF. The hydrolytic enzyme activities of treated PKC extract were compared for each sampling interval. The scanning electron microscopy analyses revealed the formation of extracellular matrices around L. plantarum strains attached to the surface of PKC biomass during SSF, inferring that the investigated L. plantarum strains have the capability to grow on PKC biomass and perform synergistic secretions of various extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes that were essential for the effective biodegradation of PKC. The substantial growth of selected L. plamtraum strains on PKC during SSF revealed the promising application of selected L. plantarum strains as a biotransformation agent for cellulosic biomass.
    Matched MeSH terms: Cellulose/metabolism*
  13. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Cellulose/metabolism
  14. Tai WY, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2781.
    PMID: 30701709 DOI: 10.1002/btpr.2781
    The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
    Matched MeSH terms: Cellulose/metabolism
  15. Besser K, Malyon GP, Eborall WS, Paro da Cunha G, Filgueiras JG, Dowle A, et al.
    Nat Commun, 2018 12 03;9(1):5125.
    PMID: 30510200 DOI: 10.1038/s41467-018-07575-2
    Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.
    Matched MeSH terms: Cellulose/metabolism
  16. Lee LS, Goh KM, Chan CS, Annie Tan GY, Yin WF, Chong CS, et al.
    Microbiologyopen, 2018 12;7(6):e00615.
    PMID: 29602271 DOI: 10.1002/mbo3.615
    The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y-shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y-shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes.
    Matched MeSH terms: Cellulose/metabolism
  17. Surendran A, Siddiqui Y, Ali NS, Manickam S
    J Appl Microbiol, 2018 Jun;124(6):1544-1555.
    PMID: 29405525 DOI: 10.1111/jam.13717
    AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study.

    METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature.

    CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.

    Matched MeSH terms: Cellulose/metabolism*
  18. Kazeem MO, Shah UKM, Baharuddin AS, AbdulRahman NA
    Appl Biochem Biotechnol, 2017 Aug;182(4):1318-1340.
    PMID: 28176140 DOI: 10.1007/s12010-017-2401-z
    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.
    Matched MeSH terms: Cellulose/metabolism
  19. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Feb 10;157:1511-1524.
    PMID: 27987863 DOI: 10.1016/j.carbpol.2016.11.030
    Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.
    Matched MeSH terms: Cellulose/metabolism
  20. Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Lai Yee P, Abd-Aziz S
    Appl Microbiol Biotechnol, 2016 Jun;100(12):5231-46.
    PMID: 27115758 DOI: 10.1007/s00253-016-7545-1
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process.
    Matched MeSH terms: Cellulose/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links