Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Majeed AY, Zulkafli NES, Ad'hiah AH
    Immunol Lett, 2023 Aug;260:24-34.
    PMID: 37339685 DOI: 10.1016/j.imlet.2023.06.008
    This study attempted to explore pro-inflammatory and anti-inflammatory responses in patients with mild/moderate coronavirus disease 19 (COVID-19). Eight pro-inflammatory (IL-1α, IL-1β, IL-12, IL-17A, IL-17E, IL-31, IFN-γ and TNF-α) and three anti-inflammatory (IL-1Ra, IL-10 and IL-13) cytokines, as well as two chemokines (CXCL9 and CXCL10), were analyzed in the serum from ninety COVID-19 patients and healthy controls. Cytokine/chemokine levels were measured using enzyme-linked immunosorbent assay kits. Results revealed that IL-1α, IL-1β, IL-10, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10 were significantly higher in patients than in controls, while IL-1Ra levels were significantly lower in patients. IL-17E and CXCL9 levels showed no significant differences between patients and controls. Seven cytokines/chemokines recorded an area under the curve greater than 0.8: IL-12 (0.945), IL-17A (0.926), CXCL10 (0.909), IFN-γ (0.904), IL-1α (0.869), TNF-α (0.825) and IL-10 (0.821). As indicated by the odds ratio, elevated levels of nine cytokines/chemokines were associated with an increased risk of COVID-19: IL-1α (19.04), IL-10 (5.01), IL-12 (43.66), IL-13 (4.25), IL-17A (16.62), IL-31 (7.38), IFN-γ (13.55), TNF-α (12.00) and CXCL10 (11.18). Only one positive (IL-17E with TNF-α) and six negative (IL-1β, IL-17A and IL-17E with CXCL9, IL-10 with IL-17A, and IL-1β and IL-17A with CXCL10) correlations were found between these cytokines/chemokines. In conclusion, pro-inflammatory (IL-1α, IL-1β, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10) and anti-inflammatory (IL-10 and IL-13) cytokines/chemokines were up-regulated in the serum of patients with mild/moderate COVID-19. Their potential as biomarkers for diagnosis and prognosis is suggested and the association with COVID-19 risk is indicated to give more insight on COVID-19 immunological responses among non-hospitalized patients.
    Matched MeSH terms: Chemokines
  2. Szakmany T, Fitzgerald E, Garlant HN, Whitehouse T, Molnar T, Shah S, et al.
    Front Immunol, 2023;14:1308530.
    PMID: 38332914 DOI: 10.3389/fimmu.2023.1308530
    INTRODUCTION: Early diagnosis of sepsis and discrimination from SIRS is crucial for clinicians to provide appropriate care, management and treatment to critically ill patients. We describe identification of mRNA biomarkers from peripheral blood leukocytes, able to identify severe, systemic inflammation (irrespective of origin) and differentiate Sepsis from SIRS, in adult patients within a multi-center clinical study.

    METHODS: Participants were recruited in Intensive Care Units (ICUs) from multiple UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy control donors. Multiple clinical parameters were measured, including SOFA score, with many differences observed between SIRS and sepsis groups. Differential gene expression analyses were performed using microarray hybridization and data analyzed using a combination of parametric and non-parametric statistical tools.

    RESULTS: Nineteen high-performance, differentially expressed mRNA biomarkers were identified between control and combined SIRS/Sepsis groups (FC>20.0, p<0.05), termed 'indicators of inflammation' (I°I), including CD177, FAM20A and OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good accuracy for determination of severe, systemic inflammation (AUC>0.99). Twenty entities, termed 'SIRS or Sepsis' (S°S) biomarkers, were differentially expressed between sepsis and SIRS (FC>2·0, p-value<0.05).

    DISCUSSION: The best performing signature for discriminating sepsis from SIRS was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures performed variably in other independent gene expression datasets, this may be due to technical variation in the study/assay platform.

    Matched MeSH terms: Chemokines
  3. Hamid NH, Daud HM, Kayansamruaj P, Hassim HA, Mohd Yusoff MS, Abu Bakar SN, et al.
    Fish Shellfish Immunol, 2021 Jul;114:1-19.
    PMID: 33872754 DOI: 10.1016/j.fsi.2021.04.012
    This study evaluated the short- and long-term effects of dietary supplementation with Enterococcus hirae strain UPM02 on the growth performance, immunity, and disease resistance of hybrid catfish (Clarias gariepinus × Clarias macrocephalus) against Aeromonas hydrophila infection. In the long-term trial, fingerling fish were fed diets containing 0 (control), 2 × 105, or 2 × 107 CFU/g E. hirae UPM02 for 120 days. Administration of E. hirae UPM02 had significant effects on the specific growth rate (SGR), feed utilization efficiency, body indices (P 
    Matched MeSH terms: Chemokines, CC; Chemokines, CXC
  4. Mohamad A, Zamri-Saad M, Amal MNA, Al-Saari N, Monir MS, Chin YK, et al.
    Vaccines (Basel), 2021 Apr 10;9(4).
    PMID: 33920311 DOI: 10.3390/vaccines9040368
    Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.
    Matched MeSH terms: Chemokines
  5. Ramachandran S, Verma AK, Dev K, Goyal Y, Bhatt D, Alsahli MA, et al.
    Oxid Med Cell Longev, 2021;2021:5563746.
    PMID: 34336101 DOI: 10.1155/2021/5563746
    With over a million deaths every year around the world, lung cancer is found to be the most recurrent cancer among all types. Nonsmall cell lung carcinoma (NSCLC) amounts to about 85% of the entire cases. The other 15% owes it to small cell lung carcinoma (SCLC). Despite decades of research, the prognosis for NSCLC patients is poorly understood with treatment options limited. First, this article emphasises on the part that tumour microenvironment (TME) and its constituents play in lung cancer progression. This review also highlights the inflammatory (pro- or anti-) roles of different cytokines (ILs, TGF-β, and TNF-α) and chemokine (CC, CXC, C, and CX3C) families in the lung TME, provoking tumour growth and subsequent metastasis. The write-up also pinpoints recent developments in the field of chemokine biology. Additionally, it covers the role of extracellular vesicles (EVs), as alternate carriers of cytokines and chemokines. This allows the cytokines/chemokines to modulate the EVs for their secretion, trafficking, and aid in cancer proliferation. In the end, this review also stresses on the role of these factors as prognostic biomarkers for lung immunotherapy, apart from focusing on inflammatory actions of these chemoattractants.
    Matched MeSH terms: Chemokines/metabolism*
  6. Mosavat M, Mirsanjari M, Lwaleed BA, Kamarudin M, Omar SZ
    J Diabetes Res, 2021;2021:5533802.
    PMID: 34007846 DOI: 10.1155/2021/5533802
    BACKGROUND: Adipocytokines participate in regulating the inflammatory response in glucose homeostasis and type 2 diabetes. However, among these peptides, the role of adipocyte-specific fatty-acid-binding protein (AFABP), chemerin, and secreted protein acidic and rich in cysteine (SPARC) in gestational diabetes (GDM) has not been fully investigated.

    METHOD: The maternal fasting level of adipocytokines of 53 subjects with GDM and 43 normal pregnant (NGDM) was measured using multiplex immunoassay at 24-28 weeks, before delivery, immediate postpartum, and 2-6 months postpuerperium.

    RESULTS: Higher levels of AFABP were associated with a 3.7-fold higher risk of GDM. Low chemerin levels were associated with a 3.6-fold higher risk of GDM. Interleukin-10 (IL-10) was inversely associated with the risk of GDM. SPARC had no association with GDM. AFABP was directly correlated to interleukin-6 (r = 0.50), insulin resistance index (r = 0.26), and body mass index (r = 0.28) and inversely correlated to C-reactive protein (r = -0.27). Chemerin levels were directly and strongly correlated with IL-10 (r = 0.41) and interleukin-4 (r = 0.50) and inversely correlated to insulin resistance index (r = -0.23) in GDM but not NGDM. In the longitudinal assessment, there were no significant differences in AFABP and chemerin concentrations of both studied groups.

    CONCLUSION: AFABP and chemerin were associated with a higher risk of GDM. These adipocytokines were related to insulin resistance, body mass index, and inflammation in pregnant women diagnosed with GDM.

    Matched MeSH terms: Chemokines/blood*
  7. Mohd Bukhari FD, Lau YL, Fong MY
    Am J Trop Med Hyg, 2020 Dec 14.
    PMID: 33319732 DOI: 10.4269/ajtmh.20-0797
    Invasion of Plasmodium knowlesi merozoite into human erythrocytes involves molecular interaction between the parasite's Duffy binding protein (PkDBPαII) and the Duffy antigen receptor for chemokines on the erythrocytes. This study investigates the binding activity of human erythrocyte with PkDBPαII of P. knowlesi isolates from high and low parasitemic patients in an erythrocyte binding assay. The binding activity was determined by counting the number and measuring the size of rosettes formed in the assay. The protein PkDBPαII of P. knowlesi isolated from low parasitemia cases produced significantly higher number of rosettes with human erythrocytes than high parasitemia case isolates (65.5 ± 12.9 and 17.2 ± 5.5, respectively). Interestingly, PkDBPαII of isolates from high parasitemia cases formed significantly larger rosettes with human erythrocytes than PkDBPαII of isolates from low parasitemia cases (18,000 ± 13,000 µm2 and 1,315 ± 623 µm2, respectively).
    Matched MeSH terms: Chemokines
  8. Abdullah Zubir AZ, Whawell SA, Wong TS, Khurram SA
    Oral Dis, 2020 Nov;26(8):1668-1676.
    PMID: 32562323 DOI: 10.1111/odi.13500
    BACKGROUND: The expression of XCR1 receptor and its metamorphic ligand lymphotactin (hLtn) has been shown in cancers but their precise role in tumorigenesis is poorly understood including the significance of the physiologically existing hLtn monomeric (CC3) and dimeric (W55D) confirmations where the latter thought to function as the receptor antagonist. The aim of this study was to explore the functional role of bioengineered hLtn variants and the role of fibroblasts in XCR1/hLtn expression regulation in oral cancer cells (OCCL).

    MATERIAL AND METHODS: qRT-PCR and flow cytometry were performed to evaluate mRNA and protein expression of XCR1 and hLtn. Recombinant hLtn variants (wild-type, CC3 and W55D mutant) were designed, expressed, purified and evaluated using proliferation, adhesion and chemotaxis assays. XCR1 and hLtn expression regulation by fibroblasts was determined using indirect co-culture. XCR1 and hLtn expression in primary and metastatic OSCC tissue was assessed using immunohistochemistry.

    RESULTS: hLtn caused a significant decrease in OCCL XCR1 surface protein expression. hLtn CC3 mutant was highly functional facilitating proliferation and migration. Conditioned media from primary cancer-associated and senescent fibroblasts significantly upregulated XCR1 and hLtn mRNA expression in OCCL. Immunohistochemistry revealed higher XCR1 and hLtn expression in metastatic tumour deposits and surrounding stroma compared to primary OSCC tissue.

    CONCLUSIONS: The development of hLtn biological mutants, regulation of XCR1 expression by its ligand hLtn and crosstalk with fibroblasts are novel findings suggesting an important role for the XCR1/hLtn axis within the OSCC tumour microenvironment. These discoveries build upon previous studies and suggest that the hLtn/XCR1 axis has a significant role in stromal crosstalk and OSCC progression.

    Matched MeSH terms: Chemokines
  9. Gazali AM, Schroderus AM, Näntö-Salonen K, Rintamäki R, Pihlajamäki J, Knip M, et al.
    Diabetologia, 2020 11;63(11):2396-2409.
    PMID: 32880687 DOI: 10.1007/s00125-020-05257-7
    AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking.

    METHODS: We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as γδ T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb+) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age.

    RESULTS: Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8-CD27- MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and β7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-γ (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb+ children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3+ T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3+ T cells, p = 0.007). No alterations in γδ T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb+ children, with the exception of an increased frequency of IL-17A+ γδ T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of γδ T cells, p = 0.002).

    CONCLUSIONS/INTERPRETATION: Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes. Graphical abstract.

    Matched MeSH terms: Chemokines, CC
  10. Boo SY, Tan SW, Alitheen NB, Ho CL, Omar AR, Yeap SK
    Sci Rep, 2020 10 27;10(1):18348.
    PMID: 33110122 DOI: 10.1038/s41598-020-75340-x
    The infectious bursal disease (IBD) is an acute immunosuppressive viral disease that significantly affects the economics of the poultry industry. The IBD virus (IBDV) was known to infect B lymphocytes and activate macrophage and T lymphocytes, but there are limited studies on the impact of IBDV infection on chicken intraepithelial lymphocyte natural killer (IEL-NK) cells. This study employed an mRNA sequencing approach to investigate the early regulation of gene expression patterns in chicken IEL-NK cells after infection with very virulent IBDV strain UPM0081. A total of 12,141 genes were expressed in uninfected chicken IEL-NK cells, and most of the genes with high expression were involved in the metabolic pathway, whereas most of the low expressed genes were involved in the cytokine-cytokine receptor pathway. A total of 1,266 genes were differentially expressed (DE) at 3 day-post-infection (dpi), and these DE genes were involved in inflammation, antiviral response and interferon stimulation. The innate immune response was activated as several genes involved in inflammation, antiviral response and recruitment of NK cells to the infected area were up-regulated. This is the first study to examine the whole transcriptome profile of chicken NK cells towards IBDV infection and provides better insight into the early immune response of chicken NK cells.
    Matched MeSH terms: Chemokines/metabolism
  11. Nunez PRM, Honorio-França AC, Geiger SM, Guedes M, Fagundes DLG, Magalhães AM, et al.
    Trop Biomed, 2020 Sep 01;37(3):763-777.
    PMID: 33612789 DOI: 10.47665/tb.37.3.763
    The aim of this study was to evaluate the prevalence of enteroparasitic infections in students and their hormonal and immunological repercussions on physical development. Students of basic education of both sexes were evaluated. Parasitological stool tests were performed using the Hoffman and Kato-Katz methods. The students were divided into two groups: a control group (negative parasitological examination, N=25) and an infected group (positive parasitological test, N=25). Anthropometric variables (height, weight, and BMI), concentrations of hormones (melatonin and cortisol), cytokine/chemokine levels (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α) and physical performance (aerobic capacity, upper- and lower-limb muscle strength and abdominal performance) were evaluated. The prevalence of parasitic infection among the students was 7.98%. No anthropometric differences were observed among the groups. IL-2 and TNF-α levels were higher and IL-8 levels were lower in serum from students who were positive for parasitic infection. Serum from students who were positive for parasitic infection showed higher levels of melatonin than that from parasitenegative students. No differences were observed in cortisol levels. Students who were positive for parasitic infection presented greater lower-limb strength and lower abdominal performance than parasite-negative students. In the parasitic infection group, IL-12 was positively correlated with melatonin. In the parasitic infection group, IL-8 showed a positive correlation with aerobic capacity, while IL-17 and TNF-α showed a positive correlation with abdominal performance. These data suggest that parasitic infections determine the profile of inflammatory cytokines and that melatonin may be involved in the control of this process to minimize tissue damage. Additionally, students' difficulty in practising physical exercises can be an indication of enteroparasitic infection.
    Matched MeSH terms: Chemokines
  12. Mohd Isa F, Ahmed Al-Haj N, Mat Isa N, Ideris A, Powers C, Oladapo O, et al.
    PMID: 31837598 DOI: 10.1016/j.cimid.2019.101399
    Among different inbred chickens' lines, we previously showed that lines P and N of Institute for Animal Health, Compton, UK are the most susceptible and the least affected lines, respectively, following infection with very virulent infectious bursal disease virus (vvIBDV). In this study, the differential expressions of 29 different immune-related genes were characterized. Although, birds from both lines succumbed to infection, line P showed greater bursal lesion scores and higher viral copy numbers compared to line N. Interestingly, line N showed greater down-regulation of B cell related genes (BLNK, TNFSF13B and CD72) compared to line P. While up-regulation of T-cell related genes (CD86 and CTLA4) and Th1 associated cytokines (IFNG, IL2, IL12A and IL15) were documented in both lines, the expression levels of these genes were different in the two lines. Meanwhile, the expression of IFN-related genes IFNB, STAT1, and IRF10, but not IRF5, were up-regulated in both lines. The expression of pro-inflammatory cytokines (IL1B, IL6, IL18, and IL17) and chemokines (CXCLi2, CCL4, CCL5 and CCR5) were up-regulated in both lines with greater increase documented in line P compared to line N. Strikingly, the expression of IL12B was detected only in line P whilst the expression of IL15RA was detected only in line N. In conclusion, the bursal immunopathology of IBDV correlates more with expression of proinflammatory response related genes and does not related to expression of B-cell related genes.
    Matched MeSH terms: Chemokines/genetics*; Chemokines/immunology
  13. Jamaluddin J, Mohd Khair NK, Vinodamaney SD, Othman Z, Abubakar S
    BMC Genet, 2020 01 03;21(1):1.
    PMID: 31900126 DOI: 10.1186/s12863-019-0803-3
    BACKGROUND: C-C motif Chemokine Ligand 3 Like 1 (CCL3L1) is a multiallelic copy number variable, which plays a crucial role in immunoregulatory and hosts defense through the production of macrophage inflammatory protein (MIP)-1α. Variable range of the CCL3L1 copies from 0 to 14 copies have been documented in several different populations. However, there is still lack of report on the range of CCL3L1 copy number exclusively among Malaysians who are a multi-ethnic population. Thus, this study aims to extensively examine the distribution of CCL3L1 copy number in the three major populations from Malaysia namely Malay, Chinese and Indian. A diploid copy number of CCL3L1 for 393 Malaysians (Malay = 178, Indian = 90, and Chinese = 125) was quantified using Paralogue Ratio Tests (PRTs) and then validated with microsatellites analysis.

    RESULTS: To our knowledge, this is the first report on the CCL3L1 copy number that has been attempted among Malaysians and the Chinese ethnic group exhibits a diverse pattern of CCL3L1 distribution copy number from the Malay and Indian (p 

    Matched MeSH terms: Chemokines, CC/genetics*
  14. Swathi B, Charitha M, Mandava D, Tugaram N, Mudrakola DP, Yelamanchi R
    J Int Soc Prev Community Dent, 2019 04 12;9(2):205-209.
    PMID: 31058072 DOI: 10.4103/jispcd.JISPCD_438_18
    Aim: This study aims to find out the proinflammatory chemokines macrophage inflammatory protein (MIP)-1α and MIP-1β levels in gingival crevicular fluid (GCF) of primary, mixed, and permanent dentitions.

    Materials and Methods: GCF of 160 individuals (4-15 years of age) was collected by the extracrevicular method. They were categorized into four groups (40 per each group). Group I: subjects with primary dentition (4-5 years of age), Group II: 40 subjects in early transition period (6-8 years), Group III: 40 individuals in the late transition period (9-11 years), and Group IV: 40 individuals with permanent dentition (12-15 years). MIP-lα and MIP-1β levels were determined in the samples of GCF by ELISA method. Data were analyzed by software SPSS Version 20 (IBM SPSS Statistics for Windows, IBM Corp., Armonk, NY: USA).

    Results: MIP-1α and MIP-1β were detected in all samples. The highest mean MIP-1α and MIP-1β concentrations in GCF were detected in the early transition period, while the lowest concentrations were seen in primary dentition group. The chemokine levels were higher in girls than in boys in Group III. There was a substantial rise of MIP-1α and MIP-1β levels during eruption.

    Conclusions: Since levels of MIP-1α and MIP-1β in GCF are positively associated with tooth eruption, they may perhaps be deemed as novel biomarkers in the eruption process.

    Matched MeSH terms: Chemokines
  15. Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR
    Front Pharmacol, 2019;10:1295.
    PMID: 31749703 DOI: 10.3389/fphar.2019.01295
    Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
    Matched MeSH terms: Chemokines
  16. Islam MA, Kamal MA, Md Zulfiker AH, Gan SH
    Curr Pharm Des, 2019;25(27):2907-2908.
    PMID: 31621552 DOI: 10.2174/138161282527191007151037
    Matched MeSH terms: Chemokines
  17. Andy SN, Pandy V, Alias Z, Kadir HA
    Life Sci, 2018 Aug 01;206:45-60.
    PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035
    AIM: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.

    MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.

    KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.

    SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.

    Matched MeSH terms: Chemokines/antagonists & inhibitors
  18. Fu R, Mokhtar SS, Phipps ME, Hoh BP, Xu S
    Eur J Hum Genet, 2018 06;26(6):886-897.
    PMID: 29476164 DOI: 10.1038/s41431-018-0120-8
    Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.
    Matched MeSH terms: Chemokines, CC
  19. Bhatt P, Kumaresan V, Palanisamy R, Ravichandran G, Mala K, Amin SMN, et al.
    Fish Shellfish Immunol, 2018 Jan;72:670-678.
    PMID: 29162541 DOI: 10.1016/j.fsi.2017.11.036
    Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details.
    Matched MeSH terms: Chemokines
  20. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Chemokines, CXC/genetics; Chemokines, CXC/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links