Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Nazemian V, Manaheji H, Sharifi AM, Zaringhalam J
    Cell Mol Biol (Noisy-le-grand), 2018 Jan 31;64(1):19-26.
    PMID: 29412789 DOI: 10.14715/cmb/2018.64.2.5
    Neuroinflammation plays a crucial role in expression of symptoms of numerous autoimmune and neurodegenerative diseases such as pain during rheumatoid arthritis. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways have been strongly implicated in the generation of pathological pain states, particularly at central nervous system sites and induction of spinal neuroinflammatory symptoms. The wide ranges of research to define new therapeutic approaches, including neuroimmune-modulators like stem cells are in progress. Mesenchymal stem cells conditioned medium (MSC-CM) has anti-inflammatory factors which can regulate the immune responses. The aim of this study was to investigate the effect of administration of MSC-CM on behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Complete Freund's adjuvant (CFA)-induced arthritis (AA) was caused by single subcutaneous injection of CFA into the rat's hind paw on day 0. MSC-CM was administered daily (i.p.) and during the 21 days of the study after injection. Hyperalgesia, Edema, Serum TNF-α levels and p38MAPK and NF-κB activities were assessed on days 0,7,14 and 21 of the study. The results of this study indicated the role of MSC-CM in reducing inflammatory symptoms, serum TNF-α levels and activity of intracellular signaling pathway factors during different phases of inflammation caused by CFA. It seems that MSC-CM treatment due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain during CFA-induced arthritis.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  2. Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB
    Mol Biol Rep, 2024 Feb 01;51(1):271.
    PMID: 38302795 DOI: 10.1007/s11033-023-09080-2
    BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity.

    METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively.

    RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment.

    CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.

    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  3. Kwok LS, Yian SS, Ismael LQ, Bee YTG, Harn GL, Yin KB
    Mol Biol Rep, 2024 Feb 21;51(1):317.
    PMID: 38381204 DOI: 10.1007/s11033-024-09269-z
    BACKGROUND: Our previous study investigated the levels of soluble growth factors in the conditioned media of bone marrow-derived mesenchymal stem cells (BMSCs) pre-treated with thiazolidinedione solutions. The present study aimed to investigate the complex intracellular proteins extracted from BMSCs pre-treated with pioglitazone and/or rosiglitazone using proteomics.

    METHODS: The proliferative effect of the identified protein on MCF-7 cells that interacted non-adhesively with BMSCs pre-treated with pioglitazone and/or rosiglitazone was evaluated using cell culture inserts and conditioned media. The mRNA expression of proliferation and lipid accumulation markers was also evaluated in the interacted MCF-7 cells by reverse transcription-quantitative PCR. Finally, the correlation between the identified protein and fibroblast growth factor 4 (FGF-4) protein in the conditioned media of the pre-treated BMSCs was evaluated by ELISA.

    RESULTS: The present study identified vimentin as the specific protein among the complex intracellular proteins that likely plays a role in MCF-7 cell proliferation when the breast cancer cells interacted non-adhesively with BMSCs pre-treated with a combination of pioglitazone and rosiglitazone. The inhibition of this protein promoted the proliferation of MCF-7 cells when the breast cancer cells interacted with pre-treated BMSCs. Gene expression analysis indicated that pre-treatment of BMSCs with a combination of pioglitazone and rosiglitazone decreased the mRNA expression of Ki67 and proliferating cell nuclear antigen in MCF-7 cells. The pre-treatment did not induce mRNA expression of PPARγ, which is a sign of lipid accumulation. The level of vimentin protein was also associated with the FGF-4 protein expression level in the conditioned media of the pre-treated BMSCs. Bioinformatics analysis revealed that vimentin regulated the expression of FGF-4 through its interaction with SRY-box 2 and POU class 5 homeobox 1.

    CONCLUSIONS: The present study identified a novel intracellular protein that may represent the promising target in pre-treated BMSCs to decrease the proliferation of breast cancer MCF-7 cells for human health and wellness.

    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  4. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  5. Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, et al.
    Cell Tissue Res, 2019 Feb;375(2):383-396.
    PMID: 30232595 DOI: 10.1007/s00441-018-2918-7
    Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  6. Soopramanien M, Khan N, Neerooa BNHM, Sagathevan K, Siddiqui R
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):733-740.
    PMID: 33773536 DOI: 10.31557/APJCP.2021.22.3.733
    OBJECTIVES: The overall aim was to determine whether gut bacteria of Columbia livia are a potential source of antitumour molecules.

    METHODS: Faecal and gut microbiota of Columbia livia were isolated, identified and conditioned media were prepared containing metabolites. Growth inhibition, lactate dehydrogenase cytotoxicity and cell survival assays were accomplished against cervical cancer cells. Next, liquid-chromatography mass spectrometry was conducted to elucidate the molecules present.

    RESULTS: A plethora of bacteria from faecal matter and gastrointestinal tract were isolated. Selected conditioned media exhibited potent anticancer effects and displayed cytotoxicity to cervical cancer cells at IC50 concentration of 10.65 and 15.19 µg/ml. Moreover, cells treated with conditioned media exhibited morphological changes, including cell shrinking and rounding; indicative of apoptosis, when compared to untreated cells. A total of 111 and 71 molecules were revealed from these gut and faecal metabolites. The identity of 60 molecules were revealed including, dihydroxymelphalan. Nonetheless, 122 molecules remain unidentified and are the subject of future studies.

    CONCLUSION: These findings suggest that gut bacteria of Columbia livia possess molecules, which may have anticancer activities. Further in silico testing and/or high throughput screening will determine potential anticancer properties of these molecules.
    .

    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  7. Baharudin MMA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, et al.
    PLoS One, 2021;16(5):e0251514.
    PMID: 33974665 DOI: 10.1371/journal.pone.0251514
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  8. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  9. Chowdhury SR, Aminuddin BS, Ruszymah BH
    Indian J Exp Biol, 2012 May;50(5):332-9.
    PMID: 22803323
    In the present study in vitro expansion of human keratinocytes by supplementing dermal fibroblasts conditioned medium (DFCM) has been reported. Effect of two different DFCM acquired by culturing fibroblasts in keratinocyte-specific medium (defined keratinocytes serum free medium, DFCM-DKSFM) and fibroblast-specific serum free medium (F12: DMEM nutrient mix, DFCM-FD) have been compared. Growth kinetics of keratinocytes in terms of efficiency of cell attachment, expansion index, apparent specific growth rate and growth potential at the end of culture was evaluated in culture supplemented with DFCM-DKSFM and DFCM-FD in comparison with control i.e. DKSFM only. Results indicated that supplementation of DFCM caused significant increase in keratinocyte attachment. Efficiency of keratinocyte attachment in culture supplemented with bFCM-DKSFM was significantly higher compared to those cultured in DFCM-FD and DKSFM. In addition, the expansion index of keratinocytes in cultures supplemented with DFCM-DKSFM and DFCM-FD were 3.7 and 2.2 times higher than that of control condition even though the apparent growth rate and proliferative potential was found significantly lower. These results suggested that supplementation of DFCM enhanced expansion of keratinocyte by increasing efficiency of cell attachment, and DFCM-DKSFM provided suitable condition for in vitro expansion of keratinocytes compared to DFCM-FD and control condition.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  10. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  11. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  12. Qattan MY, Bakker EY, Rajendran R, Chen DW, Saha V, Liu J, et al.
    PLoS One, 2017;12(6):e0178606.
    PMID: 28582465 DOI: 10.1371/journal.pone.0178606
    Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor (GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of the bone marrow microenvironment to drug response/resistance remain unclear. The role of the microenvironment and the identification of chemoresistance determinants were studied by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide (Etop) grown in the presence or absence of bone marrow conditioned media (CM). The necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM, whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1) were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubiquitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-specific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but not in the resistant cells with phosphorylated GR forms being generally less recruited in the presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM promoted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggesting that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a correlation between microenvironment-induced ALL proliferation and altered response to chemotherapy.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  13. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA
    Lett Appl Microbiol, 2018 May;66(5):416-426.
    PMID: 29457249 DOI: 10.1111/lam.12867
    Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram-positive (Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat-inactivation at 95°C for 10 min had no effect on conditioned media-mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.

    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  14. Akbar N, Siddiqui R, Sagathevan K, Khan NA
    Int Microbiol, 2020 Nov;23(4):511-526.
    PMID: 32124096 DOI: 10.1007/s10123-020-00123-3
    Infectious diseases, in particular bacterial infections, are the leading cause of morbidity and mortality posing a global threat to human health. The emergence of antibiotic resistance has exacerbated the problem further. Hence, there is a need to search for novel sources of antibacterials. Herein, we explored gut bacteria of a variety of animals living in polluted environments for their antibacterial properties against multi-drug resistant pathogenic bacteria. A variety of species were procured including invertebrate species, Blaptica dubia (cockroach), Gromphadorhina portentosa (cockroach), Scylla serrata (crab), Grammostola rosea (tarantula), Scolopendra subspinipes (centipede) and vertebrate species including Varanus salvator (water monitor lizard), Malayopython reticulatus (python), Cuora amboinensis (tortoise), Oreochromis mossambicus (tilapia fish), Rattus rattus (rat), Gallus gallus domesticus (chicken) and Lithobates catesbeianus (frog). Gut bacteria of these animals were isolated and identified using microbiological, biochemical, analytical profiling index (API) and through molecluar identification using 16S rRNA sequencing. Bacterial conditioned media (CM) were prepared and tested against selected Gram-positive and Gram-negative pathogenic bacteria as well as human cells (HaCaT). The results revealed that CM exhibited significant broad-spectrum antibacterial activities. Upon heat inactivation, CM retained their antibacterial properties suggesting that this effect may be due to secondary metabolites or small peptides. CM showed minimal cytotoxicity against human cells. These findings suggest that gut bacteria of animals living in polluted environments produce broad-spectrum antibacterial molecule(s). The molecular identity of the active molecule(s) together with their mode of action is the subject of future studies which could lead to the rational development of novel antibacterial(s).
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  15. Yong KW, Li Y, Liu F, Bin Gao, Lu TJ, Wan Abas WA, et al.
    Sci Rep, 2016 10 05;6:33067.
    PMID: 27703175 DOI: 10.1038/srep33067
    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  16. Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, et al.
    Sci Rep, 2022 Jul 19;12(1):12315.
    PMID: 35853996 DOI: 10.1038/s41598-022-16671-9
    As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  17. Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V
    Cell Biol Int, 2013 Oct;37(10):1122-8.
    PMID: 23716460 DOI: 10.1002/cbin.10138
    Stem cell biology has gained remarkable interest in recent years, driven by the hope of finding cures for numerous diseases including skin wound healing through transplantation medicine. Initially upon transplantation, these cells home to and differentiate within the injured tissue into specialised cells. Contrariwise, it now appears that only a small percentage of transplanted cells integrate and survive in host tissues. Thus, the foremost mechanism by which stem cells participate in tissue repair seems to be related to their trophic factors. Indeed, stem cells provide the microenvironment with a wide range of growth factors, cytokines and chemokines, which can broadly defined as the stem cells secretome. In in vitro condition, these molecules can be traced from the conditioned medium or spent media harvested from cultured cells. Conditioned medium now serves as a new treatment modality in regenerative medicine and has shown a successful outcome in some diseases. With the emergence of this approach, we described the possibility of using stem cells conditioned medium as a novel and promising alternative to skin wound healing treatment. Numerous pre-clinical data have shown the possibility and efficacy of this treatment. Despite this, significant challenges need to be addressed before translating this technology to the bedside.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  18. Chan EWL, Krishnansamy S, Wong C, Gan SY
    Neurotoxicology, 2019 01;70:91-98.
    PMID: 30408495 DOI: 10.1016/j.neuro.2018.11.001
    The cognitive impairment caused by Alzheimer's disease (AD) is associated with beta-amyloid (Aβ) and tau proteins, and is accompanied by inflammation. Recently, a novel inflammasome signaling pathway has been uncovered. Inflammasomes are implicated in the execution of inflammatory responses and pyroptotic death leading to neurodegeneration. Thus, the inflammasome signaling pathway could be a potential therapeutic target for AD. Neural stem cells (NSCs) are multipotent cells that can self-renew and differentiate into distinct neural cells. NSC therapy has been considered to be a promising therapeutic approach in protecting the central nervous system and restoring it following damage. However, the mechanisms involved remain unclear. The aims of this study were to investigate the protective effects of NE4C neural stem cells against microglia-mediated neurotoxicity and to explore molecular mechanisms mediating their actions. NE4C decreased the levels of caspase-1 and IL-1β, and attenuated the level of the NLRP3 inflammasome and its associated protein adapter, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) in LPS-stimulated BV2 microglial cells, possibly by regulating the phosphorylation of p38α MAPK. The conditioned media obtained from co-culture of LPS-stimulated BV2 and NE4C cells exhibited protective effects on SH-SY5Y cells against microglia-mediated neurotoxicity; this was associated with an attenuation of tau phosphorylation and amyloidogenesis and accompanied by down-regulation of GSK-3β and p38α MAPK signalling pathways. In conclusion, the present study suggested that NSC therapy could be a potential strategy against microglia-mediated neurotoxicity. NSCs regulate NLRP3 activation and IL-1β secretion, which are critical in the initiation of the inflammatory responses, hence preventing the release of neurotoxic pro-inflammatory factors by microglia. This eventually reduces tau hyperphosphylation and amyloidogenesis, possibly through the regulation of GSK-3β and p38α MAPK signalling pathways, and thus protects SH-SY5Y cells against microglia-mediated neurotoxicity.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  19. Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S
    PLoS One, 2020;15(9):e0238449.
    PMID: 32886713 DOI: 10.1371/journal.pone.0238449
    Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
  20. Khoo BY, Miswan N, Balaram P, Nadarajan K, Elstner E
    Int J Mol Sci, 2012;13(5):5607-27.
    PMID: 22754319 DOI: 10.3390/ijms13055607
    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links