Displaying publications 1 - 20 of 477 in total

Abstract:
Sort:
  1. Gopal K, Nagarajan P, Jedy J, Raj AT, Gnanaselvi SK, Jahan P, et al.
    PLoS One, 2013;8(6):e67098.
    PMID: 23826202 DOI: 10.1371/journal.pone.0067098
    Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe(-/-) mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe(-/-) mice.
    Matched MeSH terms: Apolipoproteins E/deficiency*
  2. Tumian NR, Wong M, Wong CL
    J Obstet Gynaecol Res, 2015 Jun;41(6):967-70.
    PMID: 25510540 DOI: 10.1111/jog.12648
    α°-thalassemia is a well-known cause of hydrops fetalis in South-East Asia and can be detected in utero. We report a very rare case of thyrotoxic cardiomyopathy associated with hyperplacentosis secondary to α°-thalassemia-associated hydrops fetalis. A 22-year-old primigravida with microcytic anemia presented at 27 weeks' gestation with pre-eclampsia, hyperthyroidism and cardiac failure. Serum β-human chorionic gonadotrophin was markedly elevated and abdominal ultrasound revealed severe hydropic features and enlarged placenta. Serum β-human chorionic gonadotrophin, cardiac function and thyroid function tests normalized after she delivered a macerated stillbirth. Histopathology of the placenta showed hyperplacentosis. Blood DNA analysis revealed that both patient and husband have the α°-thalassemia trait. This case illustrates a very atypical presentation of α°-thalassemia-associated hydrops fetalis and the importance of early prenatal diagnosis of α-thalassemia in women of relevant ethnic origin with microcytic anemia so that appropriate genetic counseling can be provided to reduce maternal morbidity and the incidence of hydrops fetalis.
    Matched MeSH terms: Anemia, Iron-Deficiency
  3. Wong CED, Hua K, Monis S, Saxena V, Norazit A, Noor SM, et al.
    J Neurochem, 2021 02;156(4):481-498.
    PMID: 32583440 DOI: 10.1111/jnc.15108
    Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
    Matched MeSH terms: Transcription Factors/deficiency*; Zebrafish Proteins/deficiency*; Glial Cell Line-Derived Neurotrophic Factor/deficiency*
  4. Lee WS, Yap SF, Looi LM
    J Paediatr Child Health, 2007 Sep;43(9):636-9.
    PMID: 17688648
    We conducted a prospective study to determine the role of alpha1-antitrypsin (alpha1AT) deficiency in the pathogenesis of neonatal cholestasis and other childhood liver diseases in a multi-ethnic Southeast Asian population.
    Matched MeSH terms: alpha 1-Antitrypsin Deficiency/complications*; alpha 1-Antitrypsin Deficiency/ethnology
  5. Kiorpes TC, Wolf G, Arroyave G, Wai TN
    Am J Clin Nutr, 1979 Sep;32(9):1842-6.
    PMID: 89810 DOI: 10.1093/ajcn/32.9.1842
    Serum samples were obtained from 43 children 14 years old or younger in Malaysia and Guatemala. The levels of the serum glycoprotein alpha 2-macroglobulin (alpha 2-M) were assayed by two methods: the trypsin-binding assay of Ganrot (Clin. Chim. Acta 14:493, 1960) and a radial immunodiffusion assay against alpha 2-M antiserum. The two methods gave the same results. When serum alpha 2-M levels were plotted against serum vitamin A concentrations, they were significantly correlated (r = 0.505, P less than 0.001); children with serum vitamin A levels greater than 40 micrograms/100 ml had alpha 2-M levels of 3.71 +/- 0.79 mg/ml (mean +/- SD, n = 13), while those with level less than 40 micrograms/100 ml had alpha 2-M levels of 2.78 +/- 0.51 mg/ml (n = 30); the difference was significant (P less than 0.001). Normal, apparently healthy children had alpha 2-M levels of 3.90 +/- 0.39 mg/ml. Most of the children sampled suffered from a variety of infections; of these, measles appeared to counteract the effect of vitamin A deficiency by elevating alpha 2-M levels. Vitamin A-deficient children with measles had alpha 2-M levels not significantly lower than those of normal children. The difference between deficient and normal values of alpha 2-M was still significant (P less than 0.05) when expressed per milligram of serum protein, showing that the effect was not caused by lowered serum protein concentrations associated with protein-calorie malnutrition, from which most of the deficiency children suffered.
    Matched MeSH terms: Vitamin A Deficiency/blood*
  6. Eijkman C
    Ned Tijdschr Geneeskd, 1990 Aug 25;134(34):1654-7.
    PMID: 2215709
    Matched MeSH terms: Thiamine Deficiency/history
  7. Lee SW, Chaiyakunapruk N, Lai NM
    Br J Clin Pharmacol, 2017 01;83(1):211-212.
    PMID: 27650490 DOI: 10.1111/bcp.13091
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/blood; Glucosephosphate Dehydrogenase Deficiency/complications; Glucosephosphate Dehydrogenase Deficiency/diet therapy*
  8. Tan AM, Ha C, Li CF, Chan GC, Lee V, Tan PL, et al.
    Ann Acad Med Singap, 2016 Mar;45(3):106-9.
    PMID: 27146463
    Matched MeSH terms: Immunologic Deficiency Syndromes/therapy*
  9. Tasker PWG, Mollin DL, Berriman H
    Br J Haematol, 1958;4:167-176.
    DOI: 10.1111/j.1365-2141.1958.tb03847.x
    Matched MeSH terms: Vitamin B 12 Deficiency
  10. TASKER PW, MOLLIN DL, BERRIMAN H
    Br J Haematol, 1958 Apr;4(2):167-76.
    PMID: 13536254
    Matched MeSH terms: Vitamin B 12 Deficiency/complications*
  11. Norazlina M, Chua CW, Ima-Nirwana S
    Med J Malaysia, 2004 Dec;59(5):623-30.
    PMID: 15889565
    Vitamin E deficiency has been found to impair bone calcification. This study was done to determine the effects of vitamin E deficiency and supplementation on parathyroid hormone, i.e. the hormone involved in bone regulation. Female Sprague-Dawley rats were divided into 4 groups: 1) normal rat chow (RC), 2) vitamin E deficiency (VED), vitamin E deficient rats supplemented with 3) 60 mg/kg alpha-tocotrienol (ATT) and 4) 60 mg/kg (alpha-tocopherol (ATF). Treatment was carried out for 3 months. Vitamin E deficiency caused hypocalcaemia during the first month of the treatment period, increased the parathyroid hormone level in the second month and decreased the bone calcium content in the 4th lumbar bone at the end of the treatment. Vitamin E supplementation (ATT and ATF) failed to improve these conditions. The bone formation marker, osteocalcin, and the bone resorption marker, deoxypyridinoline did not change throughout the study period. In conclusion vitamin E deficiency impaired bone calcium homeostasis with subsequent secondary hyperparathyroidism and vertebral bone loss. Replacing the vitamin E with pure ATF or pure ATT alone failed to correct the changes seen.
    Matched MeSH terms: Vitamin E Deficiency/drug therapy; Vitamin E Deficiency/metabolism*
  12. Tan ML, Abrams SA, Osborn DA
    Cochrane Database Syst Rev, 2020 Dec 11;12(12):CD013046.
    PMID: 33305822 DOI: 10.1002/14651858.CD013046.pub2
    BACKGROUND: Vitamin D deficiency is common worldwide, contributing to nutritional rickets and osteomalacia which have a major impact on health, growth, and development of infants, children and adolescents. Vitamin D levels are low in breast milk and exclusively breastfed infants are at risk of vitamin D insufficiency or deficiency.

    OBJECTIVES: To determine the effect of vitamin D supplementation given to infants, or lactating mothers, on vitamin D deficiency, bone density and growth in healthy term breastfed infants.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to 29 May 2020 supplemented by searches of clinical trials databases, conference proceedings, and citations.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs in breastfeeding mother-infant pairs comparing vitamin D supplementation given to infants or lactating mothers compared to placebo or no intervention, or sunlight, or that compare vitamin D supplementation of infants to supplementation of mothers.

    DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility and risk of bias and independently extracted data. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: We included 19 studies with 2837 mother-infant pairs assessing vitamin D given to infants (nine studies), to lactating mothers (eight studies), and to infants versus lactating mothers (six studies). No studies compared vitamin D given to infants versus periods of infant sun exposure. Vitamin D supplementation given to infants: vitamin D at 400 IU/day may increase 25-OH vitamin D levels (MD 22.63 nmol/L, 95% CI 17.05 to 28.21; participants = 334; studies = 6; low-certainty) and may reduce the incidence of vitamin D insufficiency (25-OH vitamin D < 50 nmol/L) (RR 0.57, 95% CI 0.41 to 0.80; participants = 274; studies = 4; low-certainty). However, there was insufficient evidence to determine if vitamin D given to the infant reduces the risk of vitamin D deficiency (25-OH vitamin D < 30 nmol/L) up till six months of age (RR 0.41, 95% CI 0.16 to 1.05; participants = 122; studies = 2), affects bone mineral content (BMC), or the incidence of biochemical or radiological rickets (all very-low certainty). We are uncertain about adverse effects including hypercalcaemia. There were no studies of higher doses of infant vitamin D (> 400 IU/day) compared to placebo. Vitamin D supplementation given to lactating mothers: vitamin D supplementation given to lactating mothers may increase infant 25-OH vitamin D levels (MD 24.60 nmol/L, 95% CI 21.59 to 27.60; participants = 597; studies = 7; low-certainty), may reduce the incidences of vitamin D insufficiency (RR 0.47, 95% CI 0.39 to 0.57; participants = 512; studies = 5; low-certainty), vitamin D deficiency (RR 0.15, 95% CI 0.09 to 0.24; participants = 512; studies = 5; low-certainty) and biochemical rickets (RR 0.06, 95% CI 0.01 to 0.44; participants = 229; studies = 2; low-certainty). The two studies that reported biochemical rickets used maternal dosages of oral D3 60,000 IU/day for 10 days and oral D3 60,000 IU postpartum and at 6, 10, and 14 weeks. However, infant BMC was not reported and there was insufficient evidence to determine if maternal supplementation has an effect on radiological rickets (RR 0.76, 95% CI 0.18 to 3.31; participants = 536; studies = 3; very low-certainty). All studies of maternal supplementation enrolled populations at high risk of vitamin D deficiency. We are uncertain of the effects of maternal supplementation on infant growth and adverse effects including hypercalcaemia. Vitamin D supplementation given to infants compared with supplementation given to lactating mothers: infant vitamin D supplementation compared to lactating mother supplementation may increase infant 25-OH vitamin D levels (MD 14.35 nmol/L, 95% CI 9.64 to 19.06; participants = 269; studies = 4; low-certainty). Infant vitamin D supplementation may reduce the incidence of vitamin D insufficiency (RR 0.61, 95% CI 0.40 to 0.94; participants = 334; studies = 4) and may reduce vitamin D deficiency (RR 0.35, 95% CI 0.17 to 0.72; participants = 334; studies = 4) but the evidence is very uncertain. Infant BMC and radiological rickets were not reported and there was insufficient evidence to determine if maternal supplementation has an effect on infant biochemical rickets. All studies enrolled patient populations at high risk of vitamin D deficiency. Studies compared an infant dose of vitamin D 400 IU/day with varying maternal vitamin D doses from 400 IU/day to > 4000 IU/day. We are uncertain about adverse effects including hypercalcaemia.

    AUTHORS' CONCLUSIONS: For breastfed infants, vitamin D supplementation 400 IU/day for up to six months increases 25-OH vitamin D levels and reduces vitamin D insufficiency, but there was insufficient evidence to assess its effect on vitamin D deficiency and bone health. For higher-risk infants who are breastfeeding, maternal vitamin D supplementation reduces vitamin D insufficiency and vitamin D deficiency, but there was insufficient evidence to determine an effect on bone health. In populations at higher risk of vitamin D deficiency, vitamin D supplementation of infants led to greater increases in infant 25-OH vitamin D levels, reductions in vitamin D insufficiency and vitamin D deficiency compared to supplementation of lactating mothers. However, the evidence is very uncertain for markers of bone health. Maternal higher dose supplementation (≥ 4000 IU/day) produced similar infant 25-OH vitamin D levels as infant supplementation of 400 IU/day. The certainty of evidence was graded as low to very low for all outcomes.

    Matched MeSH terms: Vitamin D Deficiency/epidemiology; Vitamin D Deficiency/prevention & control*
  13. Soe HHK, Abas AB, Than NN, Ni H, Singh J, Said ARBM, et al.
    Cochrane Database Syst Rev, 2020 05 28;5:CD010858.
    PMID: 32462740 DOI: 10.1002/14651858.CD010858.pub3
    BACKGROUND: Sickle cell disease (SCD) is a genetic chronic haemolytic and pro-inflammatory disorder. With increased catabolism and deficits in energy and nutrient intake, individuals with SCD suffer multiple macro- and micro-nutritional deficiencies, including vitamin D deficiency. This is an update of a previous review.

    OBJECTIVES: To investigate the effects of vitamin D supplementation in children and adults with SCD and to compare different dose regimens. To determine the effects of vitamin D supplementation on general health (e.g. growth status and health-related quality of life), on musculoskeletal health (including bone mineral density, pain crises, bone fracture and muscle health), on respiratory health (including lung function, acute chest syndrome, acute exacerbation of asthma and respiratory infections) and the safety of vitamin D supplementation.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of last search: 19 March 2020. We also searched database such as PubMed, clinical trial registries and the reference lists of relevant articles and reviews. Date of last search: 14 January 2020.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing oral administration of any form of vitamin D supplementation at any dose and for any duration to another type or dose of vitamin D or placebo or no supplementation in people with SCD, of all ages, gender, and phenotypes.

    DATA COLLECTION AND ANALYSIS: Two authors independently extracted the data and assessed the risk of bias of the included studies. They used the GRADE guidelines to assess the quality of the evidence.

    MAIN RESULTS: Vitamin D versus placebo One double-blind RCT (n = 39) compared oral vitamin D3 (cholecalciferol) supplementation (20 participants) to placebo (19 participants) for six weeks. Only 25 participants completed the full six months of follow-up. The study had a high risk of bias due to incomplete outcome data, but a low risk of bias for randomisation, allocation concealment, blinding (of participants, personnel and outcome assessors) and selective outcome reporting; and an unclear risk of other biases. Vitamin D supplementation probably led to higher serum 25(OH)D levels at eight weeks, mean difference (MD) 29.79 (95% confidence interval (CI) 26.63 to 32.95); at 16 weeks, MD 12.67 (95% CI 10.43 to 14.90); and at 24 weeks, MD 15.52 (95% CI 13.50 to 17.54) (moderate-quality evidence). There was little or no difference in adverse events (tingling of lips or hands) between the vitamin D and placebo groups, risk ratio 3.16 (95% CI 0.14 to 72.84) (low-quality evidence). Vitamin D supplementation probably caused fewer pain days compared to the placebo group at eight weeks, MD -10.00 (95% CI -16.47 to -3.53) (low-quality evidence), but probably led to a lower (worse) health-related quality of life score (change from baseline in physical functioning PedsQL scores); at both 16 weeks, MD -12.56 (95% CI -16.44 to -8.69) and 24 weeks, MD -12.59 (95% CI -17.43 to -7.76), although this may not be the case at eight weeks (low-quality evidence). Vitamin D supplementation regimens compared Two double-blind RCTs (83 participants) compared different regimens of vitamin D. One RCT (n = 62) compared oral vitamin D3 7000 IU/day to 4000 IU/day for 12 weeks, while the second RCT (n = 21) compared oral vitamin D3 100,000 IU/month to 12,000 IU/month for 24 months. Both RCTs had low risk of bias for blinding (of participants, personnel and outcome assessors) and incomplete outcome data, but the risk of selective outcome reporting bias was high. The bias from randomisation and allocation concealment was low in one study but not in the second. There was an unclear risk of other biases. When comparing oral vitamin D 100,000 IU/month to 12,000 IU/month, the higher dose may have resulted in higher serum 25(OH)D levels at one year, MD 16.40 (95% CI 12.59 to 20.21) and at two years, MD 18.96 (95% CI 15.20 to 22.72) (low-quality evidence). There was little or no difference in adverse events between doses (low-quality evidence). There were more episodes of acute chest syndrome in the high-dose group, at one year, MD 0.27 (95% CI 0.02 to 0.52) but there was little or no difference at two years, MD 0.09 (95% CI -0.04 to 0.22) (moderate-quality evidence). At one year and two years there was also little or no difference between the doses in the presence of pain (moderate-quality evidence) or forced expiratory volume in one second % predicted. However, the high-dose group had lower values for % predicted forced vital capacity at both one and two years, MD -7.20% predicted (95% CI -14.15 to -0.25) and MD -7.10% predicted (95% CI -14.03 to -0.17), respectively. There were little or no differences between dose regimens in the muscle health of either hand or the dominant hand. The study comparing oral vitamin D3 7000 IU/day to 4000 IU/day (21 participants) did not provide data for analysis, but median serum 25(OH)D levels were reported to be lower in the low-dose group at both six and 12 weeks. At 12 weeks the median serum parathyroid hormone level was lower in the high-dose group.

    AUTHORS' CONCLUSIONS: We included three RCTs of varying quality. We consider that the current evidence presented in this review is not of sufficient quality to guide clinical practice. Until further evidence becomes available, clinicians should consider the relevant existing guidelines for vitamin D supplementation and dietary reference intakes for calcium and vitamin D. Well-designed RCTs of parallel design, are required to determine the effects and the safety of vitamin D supplementation as well as to assess the relative benefits of different doses in children and adults with SCD.

    Matched MeSH terms: Vitamin D Deficiency/therapy
  14. Soe HH, Abas AB, Than NN, Ni H, Singh J, Said AR, et al.
    Cochrane Database Syst Rev, 2017 01 20;1:CD010858.
    PMID: 28105733 DOI: 10.1002/14651858.CD010858.pub2
    BACKGROUND: Sickle cell disease is a genetic chronic haemolytic and pro-inflammatory disorder. The clinical manifestations of sickle cell disease result from the presence of mutations on the beta globin genes that generate an abnormal haemoglobin product (called haemoglobin S) within the red blood cell. Sickle cell disease can lead to many complications such as acute chest syndrome, stroke, acute and chronic bone complications (including painful vaso-occlusive crisis, osteomyelitis, osteonecrosis and osteoporosis). With increased catabolism and deficits in energy and nutrient intake, individuals with sickle cell disease suffer multiple macro- and micro-nutritional deficiencies, including vitamin D deficiency. Since vitamin D maintains calcium homeostasis and is essential for bone mineralisation, its deficiency may worsen musculoskeletal health problems encountered in sickle cell disease. Therefore, there is a need to review the effects and the safety of vitamin D supplementation in sickle cell disease.

    OBJECTIVES: To investigate the hypothesis that vitamin D supplementation increases serum 25-hydroxyvitamin D level in children and adults with sickle cell disease.To determine the effects of vitamin D supplementation on general health such as growth status and health-related quality of life; on musculoskeletal health including bone mineral density, pain crises, bone fracture and muscle health; on respiratory health which includes lung function tests, acute chest syndrome, acute exacerbation of asthma and respiratory infections; and the safety of vitamin D supplementation in children and adults with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched database such as PubMed, clinical trial registries and the reference lists of relevant articles and reviews.Date of last search: 15 December 2016.

    SELECTION CRITERIA: Randomised controlled studies and quasi-randomised controlled studies (controlled clinical studies) comparing oral administration of any form of vitamin D supplementation to another type of vitamin D or placebo or no supplementation at any dose and for any duration, in people with sickle cell disease, of all ages, gender, and phenotypes including sickle cell anaemia, haemoglobin sickle cell disease and sickle beta-thalassaemia diseases.

    DATA COLLECTION AND ANALYSIS: Two authors independently extracted the data and assessed the risk of bias of the included study. They used the GRADE guidelines to assess the quality of the evidence.

    MAIN RESULTS: One double-blind randomised controlled study including 46 people with sickle cell disease (HbSS, HbSC, HbSβ+thal and HbSβ0thal) was eligible for inclusion in this review. Of the 46 enrolled participants, seven withdrew before randomisation leaving 39 participants who were randomised. Only 25 participants completed the full six months of follow up. Participants were randomised to receive oral vitamin D3 (cholecalciferol) (n = 20) or placebo (n = 19) for six weeks and were followed up to six months. Two participants from the treatment group have missing values of baseline serum 25-hydroxyvitamin D, therefore the number of samples analysed was 37 (vitamin D n = 18, placebo n = 19).The included study had a high risk of bias with regards to incomplete outcome data (high dropout rate in the placebo group), but a low risk of bias for other domains such as random sequence generation, allocation concealment, blinding of participants, personnel and outcome assessors, selective outcome reporting; and an unclear risk of other biases.Compared to the placebo group, the vitamin D group had significantly higher serum 25-hydroxyvitamin D (25(OH)D) levels at eight weeks, mean difference 29.79 (95% confidence interval 26.63 to 32.95); at 16 weeks, mean difference 12.67 (95% confidence interval 10.43 to 14.90); and at 24 weeks, mean difference 15.52 (95% confidence interval 13.50 to 17.54). We determined the quality of the evidence for this outcome to be moderate. There was no significant difference of adverse events (tingling of lips or hands) between the vitamin D and placebo groups, risk ratio 3.16 (95% confidence interval 0.14 to 72.84), but the quality of the evidence was low. Regarding the frequency of pain, the vitamin D group had significantly fewer pain days compared to the placebo group, mean difference -10.00 (95% confidence interval -16.47 to -3.53), but again the quality of the evidence was low. Furthermore, the review included physical functioning PedsQL scores which was reported as absolute change from baseline. The vitamin D group had a lower (worse) health-related quality of life score than the placebo group but this was not significant at eight weeks, mean difference -2.02 (95% confidence interval -6.34 to 2.30). However, the difference was significant at both 16 weeks, mean difference -12.56 (95% confidence interval -16.44 to -8.69) and 24 weeks, mean difference -12.59 (95% confidence interval -17.43 to -7.76). We determined the quality of evidence for this outcome to be low.

    AUTHORS' CONCLUSIONS: We included only one low-quality clinical study which had a high risk of bias with regards to incomplete outcome data. Therefore, we consider that the evidence is not of sufficient quality to guide clinical practice. Until further evidence becomes available, clinicians should consider the relevant existing guidelines for vitamin D supplementation (e.g. the Endocrine Society Clinical Practice Guidelines) and dietary reference intakes for calcium and vitamin D (e.g. from the USA Institute of Medicine). Evidence of vitamin D supplementation in sickle cell disease from high quality studies is needed. Well-designed, randomised, placebo-controlled studies of parallel design, are required to determine the effects and the safety of vitamin D supplementation in children and adults with sickle cell disease.

    Matched MeSH terms: Vitamin D Deficiency/therapy
  15. Ong SG, Ding HJ
    Med J Malaysia, 2019 12;74(6):492-498.
    PMID: 31929474
    INTRODUCTION: Numerous studies have found that a majority of systemic lupus erythematosus (SLE) patients have suboptimal vitamin D levels. The major contributory factor is most likely attributed to sun protection measures in order to avoid SLE flares. The objectives of this research included the assessment of vitamin D status and its association with clinical manifestations of SLE, cardiovascular risk factors, autoantibodies, SLE disease activity and damage accrual.

    METHOD: This retrospective study involved SLE patients who attended the Rheumatology Clinic at the Hospital Kuala Lumpur from January 2014 to December 2016. Vitamin D was categorised as normal, insufficient or deficient, and the clinical variables were compared across vitamin D categories with chi-squared tests and Pearson correlation coefficient.

    RESULTS: We included 216 patients. The mean 25(OH)D concentration was 51.3(Standard Deviation; SD 14.8) nmol/L. Fifty (23.1%) patients had vitamin D deficiency, 120 (55.6%) had vitamin D insufficiency, while 46 (21.3%) had adequate vitamin D levels. There were statistically significant associations between vitamin D status and ethnic group, lupus nephritis and hypertension. No correlations were observed between vitamin D status with SLEDAI score (Pearson correlation coefficient -0.015, p=0.829) as well as SDI score (Pearson correlation coefficient -0.017, p=0.801).

    CONCLUSION: SLE patients should be screened for vitamin D concentrations and their levels optimised.

    Matched MeSH terms: Vitamin D Deficiency/blood*; Vitamin D Deficiency/drug therapy; Vitamin D Deficiency/etiology
  16. Chin KY, Ima-Nirwana S, Ibrahim S, Mohamed IN, Wan Ngah WZ
    Nutrients, 2014 Nov 26;6(12):5419-33.
    PMID: 25431881 DOI: 10.3390/nu6125419
    Vitamin D insufficiency is a global health problem. The data on vitamin D status in Malaysian men is insufficient. This study aimed to investigate vitamin D status among Chinese and Malay men in Malaysia and its associating factors. A cross-sectional study was conducted on 383 men aged 20 years and above, residing in Klang Valley, Malaysia. Their age, ethnicity, body anthropometry and calcaneal speed of sound (SOS) were recorded. Their fasting blood was collected for serum 25-hydroxyvitamin D (25(OH)D), intact parathyroid (PTH), total calcium and inorganic phosphate assays. Vitamin D deficiency was defined as a serum 25(OH)D level <30 nmol/L and insufficiency as a serum 25(OH)D level between 30 and 50 nmol/L. The overall prevalence of vitamin D deficiency was 0.5%, and insufficiency was 22.7%. Vitamin D deficiency and insufficiency were more prevalent in the Malays compared to the Chinese. Being Chinese, older in age, having lower body mass index (BMI) and a high physical activity status were associated significantly with a higher serum 25(OH)D level (p < 0.05). The serum PTH level was inversely associated with the serum 25(OH)D level (p < 0.05). As a conclusion, a significant proportion of Malaysian men have vitamin D insufficiency, although deficiency is uncommon. Steps should be taken to correct the vitamin D status of these men.
    Matched MeSH terms: Vitamin D Deficiency/blood*; Vitamin D Deficiency/diagnosis; Vitamin D Deficiency/ethnology
  17. Green TJ, Skeaff CM, Rockell JE, Venn BJ, Lambert A, Todd J, et al.
    Eur J Clin Nutr, 2008 Mar;62(3):373-8.
    PMID: 17342165
    OBJECTIVE: To describe the vitamin D status of women living in two Asian cities,--Jakarta (6 degrees S) and Kuala-Lumpur (2 degrees N), to examine the association between plasma 25-hydroxyvitamin D and parathyroid hormone (PTH) concentrations, and to determine a threshold for plasma 25-hydroxyvitamin D above which there is no further suppression of PTH. Also, to determine whether dietary calcium intake influences the relationship between PTH and 25-hydroxyvitamin D.

    DESIGN: Cross-sectional.

    SETTING: Jakarta, Indonesia and Kuala Lumpur, Malaysia.

    PARTICIPANTS: A convenience sample of 504 non-pregnant women 18-40 years.

    MAIN MEASURES: Plasma 25-hydroxyvitamin D and PTH.

    RESULTS: The mean 25-hydroxyvitamin D concentration was 48 nmol/l. Less than 1% of women had a 25-hydroxyvitamin D concentration indicative of vitamin D deficiency (<17.5 nmol/l); whereas, over 60% of women had a 25-hydroxyvitamin D concentration indicative of insufficiency (<50 nmol/l). We estimate that 52 nmol/l was the threshold concentration for plasma 25-hydroxyvitamin D above which no further suppression of PTH occurred. Below and above this concentration the slopes of the regression lines were -0.18 (different from 0; P=0.003) and -0.01 (P=0.775), respectively. The relation between vitamin D status and parathyroid hormone concentration did not differ between women with low, medium or high calcium intakes (P=0.611); however, even in the highest tertile of calcium intake, mean calcium intake was only 657 mg/d.

    CONCLUSION: On the basis of maximal suppression of PTH we estimate an optimal 25-hydroxyvitamin D concentration of approximately 50 nmol/l. Many women had a 25-hydroxyvitamin D below this concentration and may benefit from improved vitamin D status.

    Matched MeSH terms: Vitamin D Deficiency/blood*; Vitamin D Deficiency/physiopathology*
  18. Ngai M, Lin V, Wong HC, Vathsala A, How P
    Clin. Nephrol., 2014 Oct;82(4):231-9.
    PMID: 25161115 DOI: 10.5414/CN108182
    BACKGROUND: Vitamin D deficiency is associated with secondary hyperparathyroidism and mineral and bone disorder (MBD) in chronic kidney disease (CKD). This study aimed to determine the prevalence of vitamin D insufficiency/deficiency, and the association between vitamin D status and MBD in a multi-ethnic CKD population in Southeast Asia.

    METHODS: Predialysis CKD patients were included in this cross-sectional study. Patient demographics, medical/medication histories, and laboratory parameters (serum 25-hydroxyvitamin D (25(OH)D), creatinine, phosphate (P), calcium, albumin, and intact-PTH (i-PTH)) were collected and compared among patients with various CKD stages. The association between 25(OH)D and these parameters was determined by multiple linear regression.

    RESULTS: A total of 196 patients with mean ± SD eGFR of 26.4 ± 11.2 mL/min/1.73 m2 was included. Vitamin D deficiency (25(OH)D concentration < 15 ng/mL) and insufficiency (25(OH)D concentration 16 - 30 ng/mL) was found in 29.1% and 57.7% of the patients, respectively. Mean ± SD serum 25(OH)D was 20.8 ± 9.3 ng/mL. Female patients had lower vitamin D concentrations than males (16.9 ng/mL vs. 23.9 ng/mL; p < 0.001). Vitamin D levels were also higher in Chinese (22.3 ng/mL) than Malay (17.3 ng/mL) and Indian (13.1 ng/mL) patients (p < 0.05). Nonadjusted analyses showed higher i-PTH concentration in vitamin D deficient patients (p < 0.05).

    CONCLUSION: Despite being a sun-rich country all year round, the majority (86.8%) of predialysis CKD patients in Singapore have suboptimal vitamin D status. Lower vitamin D concentrations were found in females and in those with darker skin tone. Vitamin D deficient patients also tended to have higher i-PTH levels.

    Matched MeSH terms: Vitamin D Deficiency/epidemiology*
  19. Rahman SA, Chee WS, Yassin Z, Chan SP
    Asia Pac J Clin Nutr, 2004;13(3):255-60.
    PMID: 15331337
    Serum levels of 25-hydroxyvitamin D (25 (OH) D) were determined in 276 (103 Malays and 173 Chinese) postmenopausal women, aged 50 to 65 years. The level of 25 (OH) D was significantly lower in the postmenopausal Malay women (44.4 +/-10.6 nmol/L) compared to the Chinese women (68.8 +/- 15.7 nmol/L) (P<0.05). There were 27% Malay women with serum 25 (OH) D in the range of 50 - 100 nmol/L (defined as lowered vitamin D status, or hypovitaminosis D) and 71% with levels in the range of 25 - 50 nmol/L (defined as vitamin D insufficiency) compared to 87% and 11% Chinese women respectively. Serum 25 (OH) D was found to significantly correlate with BMI, fat mass and PTH level. Multivariate analyses showed that race has a strong association with vitamin D status. The high prevalence of inadequate levels of serum vitamin D found in our study may have important public health consequences and warrants the development of a strategy to correct this problem in the older adult Malaysian population.
    Matched MeSH terms: Vitamin D Deficiency/blood; Vitamin D Deficiency/ethnology; Vitamin D Deficiency/epidemiology*
  20. Lee WS, Jalaludin MY, Wong SY, Ong SY, Foo HW, Ng RT
    Pediatr Neonatol, 2019 02;60(1):12-18.
    PMID: 29680189 DOI: 10.1016/j.pedneo.2018.03.011
    BACKGROUND: To determine vitamin D status in children with chronic liver disease (CLD) in a tropical country.

    METHODS: Cross-sectional study in Malaysian children with CLD. Factors affecting serum vitamin D level (definition: deficient 

    Matched MeSH terms: Vitamin D Deficiency/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links