Displaying publications 1 - 20 of 350 in total

Abstract:
Sort:
  1. Thiha A, Ibrahim F
    Sensors (Basel), 2015;15(5):11431-41.
    PMID: 25993517 DOI: 10.3390/s150511431
    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings.
    Matched MeSH terms: Dengue Virus/immunology
  2. Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Apr;109:110629.
    PMID: 32228934 DOI: 10.1016/j.msec.2020.110629
    Based on the concept of LEGO toys, a fiber probe analytical platform (FPAP) was developed as a powerful diagnostic tool offering higher sensitivity in detection of infectious agents compared to established methods. Using the form and the function of LEGO toys, this protocol describes a fiber-based, 96-well plate, which suspends a new class of chemically-designed, electrospun fibers within the assay. This clamping strategy allows both sides of the developed fiber mats to interact with biomolecules within the assay thus benefiting from the tailored chemical and physical properties of these fiber-based bioreceptors in attracting the biomolecules to the surface. The fabrication method of FPAP involves one-step electrospinning of the chemically designed fibers, 3D printing of the LEGO-like probing segments, and assembly of the device followed by ELISA procedure. FPAP follows the same principles of operation as that of a conventional enzyme linked immunosorbent assay (ELISA), therefore, it can be run by lab technicians, expert in ELISA. FPAP was used for early diagnosis of Dengue fever and provided an 8-fold higher sensitivity while the limit of detection (LOD) was recorded to be in femto-gram per milliliter range which is significantly low when compared to other existing techniques or conventional assay. This platform allows different types of paper/fiber bio-receptive platforms to be incorporated within the design that promises simultaneous recognition of multiple infectious agents.
    Matched MeSH terms: Dengue Virus/immunology*
  3. Han Shiou Feng, Nur Aida Hashim, Nur Adila Kamaruddin, Nur Syahida Wadhihah Kamarudin, Norasmah Basari
    MyJurnal
    Dengue fever and dengue haemorrhagic fever are diseases caused by dengue virus transmitted by Aedes mosquitoes. Dengue fever has caused a high rate of mortalities among Malaysians every year. Even though many campaigns had been conducted by the government to reduce dengue cases, the number of infected people in this country is still high. We conducted this survey to determine the status of dengue fever awareness among residents in Kuala Terengganu. For data collection, face-to-face interviews were conducted, and a questionnaire was administered. There were three categories of respondents, namely urban area residents, rural area residents and university students. Results showed that respondents across the three groups were knowledgeable regarding dengue fever issues and there was no significant difference between the three categories of respondents in the number of residents who had been involved in dengue awareness programmes. However, most of the respondents regarded the dengue awareness programmes as moderately effective and could be overcome if prevention efforts and approaches were being carried out on a continuous basis.
    Matched MeSH terms: Dengue Virus
  4. Hu D, Zhu Z, Li S, Deng Y, Wu Y, Zhang N, et al.
    PLoS Pathog, 2019 06;15(6):e1007836.
    PMID: 31242272 DOI: 10.1371/journal.ppat.1007836
    Dengue is the most widespread vector-borne viral disease caused by dengue virus (DENV) for which there are no safe, effective drugs approved for clinical use. Here, by using sequential antigen panning of a yeast antibody library derived from healthy donors against the DENV envelop protein domain III (DIII) combined with depletion by an entry defective DIII mutant, we identified a cross-reactive human monoclonal antibody (mAb), m366.6, which bound with high affinity to DENV DIII from all four DENV serotypes. Immunogenetic analysis indicated that m366.6 is a germline-like mAb with very few somatic mutations from the closest VH and Vλ germline genes. Importantly, we demonstrated that it potently neutralized DENV both in vitro and in the mouse models of DENV infection without detectable antibody-dependent enhancement (ADE) effect. The epitope of m366.6 was mapped to the highly conserved regions on DIII, which may guide the design of effective dengue vaccine immunogens. Furthermore, as the first germline-like mAb derived from a naïve antibody library that could neutralize all four DENV serotypes, the m366.6 can be a tool for exploring mechanisms of DENV infection, and is a promising therapeutic candidate.
    Matched MeSH terms: Dengue Virus/genetics; Dengue Virus/immunology*
  5. Chua KB, Mustafa B, Abdul Wahab AH, Chem YK, Khairul AH, Kumarasamy V, et al.
    Malays J Pathol, 2011 Jun;33(1):13-20.
    PMID: 21874746
    A prospective study was carried out to evaluate the sensitivity of dengue NS1 antigen-capture ELISA in comparison with dengue virus isolation, conventional RT-PCR and real-time RT-PCR for laboratory confirmation of acute dengue based on single-acute serum samples. Four primary healthcare centres were involved to recruit patients with clinical diagnosis of dengue illness. Patient's demographic, epidemiological and clinical information were collected on a standardized data entry form and 5 ml of venous blood was collected upon consent. In the laboratory, six types of laboratory tests were performed on each of the collected acute serum sample. Of the 558 acute serum samples collected from 558 patients with clinical diagnosis of dengue from mid-August 2006 to March 2009, 174 serum samples were tested positive by the dengue NS1 antigen-capture ELISA, 77 by virus isolation, 92 by RT-PCR and 112 by real-time RT-PCR. A total of 190 serum samples were tested positive by either one or a combination of the four methods whereas, only 59 serum samples were tested positive by all four methods. Thus, based on single-acute serum samples, 190 of the 558 patients (34.1%) were laboratory-confirmed acute dengue. The overall test sensitivity was 91.6%, 40.5%, 48.4% and 58.9% for dengue NS1 antigen-capture ELISA, virus isolation, conventional RT-PCR and real-time RT-PCR respectively. Statistically, dengue NS1 antigen-capture ELISA was the most sensitive and virus isolation was the least sensitive test for the laboratory confirmation of acute dengue based on single-acute serum specimens. Real-time RT-PCR was significantly more sensitive than the conventional RT-PCR.
    Matched MeSH terms: Dengue Virus/isolation & purification*
  6. Kumarasamy V, Zuridah H, Hani AW, Mariam M, Chua KB
    Med J Malaysia, 2007 Mar;62(1):85-6.
    PMID: 17682584 MyJurnal
    The performance of a commercial rapid immunochromatographic dengue IgG/IgM assay device was evaluated against an in-place dengue IgM-capture ELISA in the National Public Health laboratory. Of the 239 serum samples from patients with clinical diagnosis of acute dengue illness, 140 and 99 samples were tested positive and negative respectively for anti-dengue IgM by the in-placed ELISA. Comparatively, 72 and 76 samples were tested positive and negative respectively, and 91 samples gave equivocal results by the rapid dengue test device. The rapid immunochromatographic assay device gave a relative sensitivity of 49.3% and a relative specificity of 62.6%. Though the rapid immunochromatographic assay device has the advantages of rapid testing which simultaneously detects both IgG and IgM and can also be performed with whole blood, serum or plasma, the user has to exercise extreme caution with the interpretation of the test result.
    Matched MeSH terms: Dengue Virus/immunology*
  7. Cardosa MJ, Noor Sham S, Tio PH, Lim SS
    PMID: 3238470
    A dot enzyme immunoassay (DEIA) was used to determine the levels of antibody to dengue 3 virus in the acute and convalescent sera of febrile patients with a clinical diagnosis of dengue fever or dengue haemorrhagic fever. The antibody titres were compared with titres determined by the haemagglutination inhibition (HI) test. The results of the study showed that, besides being more simple to perform, the DEIA is in order of magnitude more sensitive than the HI test. Furthermore, the data suggest that it is possible to use a single dilution as a cutoff point to predict with reasonable accuracy, if a patient has had a recent dengue infection. The DEIA test for antibodies to dengue virus is an appropriate technology highly suitable for rapid diagnosis and surveillance in developing countries.
    Matched MeSH terms: Dengue Virus/isolation & purification*
  8. Siew QY, Tan SH, Pang EL, Loh HS, Tan MTT
    Analyst, 2021 Mar 21;146(6):2009-2018.
    PMID: 33523052 DOI: 10.1039/d0an02219e
    The envelope glycoprotein domain III (EDIII) of dengue virus (DENV) has been recognised as the antigenic region responsible for receptor binding. In the present work, we have proposed a novel immunosensor constructed on a graphene-coated screen-printed carbon electrode (SPCE) using plant-derived EDIII as the probe antigen to target DENV IgG antibodies. The developed immunosensor demonstrated high sensitivity towards DENV IgG within a wide linear working range (125-2000 ng mL-1) under the optimised sensing conditions. The limit of detection was determined to be 22.5 ng mL-1. The immunosensor also showed high specificity towards DENV IgG, capable of differentiating DENV IgG from the antibodies of other infectious diseases including the similarly structured Zika virus (ZIKV). The ability of the immunosensor to detect dengue antibodies in serum samples was also verified by conducting tests on mouse serum samples. The proposed immunosensor was able to provide a binary (positive/negative) response towards the serum samples comparable to the conventional enzyme-linked immunosorbent assay (ELISA), indicating promising potential for realistic applications.
    Matched MeSH terms: Dengue Virus*
  9. Hairi F, Ong CH, Suhaimi A, Tsung TW, bin Anis Ahmad MA, Sundaraj C, et al.
    Asia Pac J Public Health, 2003;15(1):37-43.
    PMID: 14620496
    A cross-sectional survey was conducted to assess the level of knowledge, attitude and practices concerning dengue and its vector Aedes mosquito among selected rural communities in the Kuala Kangsar district from 16-25th June, 2002. It was found that the knowledge of the community was good. Out of the 200 respondents, 82.0% cited that their main source of information on dengue was from television/radio. The respondents' attitude was found to be good and most of them were supportive of Aedes control measures. There is a significant association found between knowledge of dengue and attitude towards Aedes control (p = 0.047). It was also found that good knowledge does not necessarily lead to good practice. This is most likely due to certain practices like water storage for domestic use, which is deeply ingrained in the community. Mass media is an important means of conveying health messages to the public even among the rural population, thus research and development of educational strategies designed to improve behaviour and practice of effective control measures among the villagers are recommended.
    Matched MeSH terms: Dengue Virus/pathogenicity
  10. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

    Matched MeSH terms: Dengue Virus/genetics; Dengue Virus/immunology; Dengue Virus/isolation & purification*
  11. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Dengue Virus/genetics; Dengue Virus/immunology; Dengue Virus/isolation & purification*
  12. Yong YK, Tan HY, Jen SH, Shankar EM, Natkunam SK, Sathar J, et al.
    J Transl Med, 2017 05 31;15(1):121.
    PMID: 28569153 DOI: 10.1186/s12967-017-1226-4
    BACKGROUND: Currently, several assays can diagnose acute dengue infection. However, none of these assays can predict the severity of the disease. Biomarkers that predicts the likelihood that a dengue patient will develop a severe form of the disease could permit more efficient patient triage and allows better supportive care for the individual in need, especially during dengue outbreaks.

    METHODS: We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD).

    RESULTS: Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P 

    Matched MeSH terms: Dengue Virus
  13. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

    Matched MeSH terms: Dengue Virus/genetics; Dengue Virus/isolation & purification*; Dengue Virus/physiology
  14. Mazlan NF, Tan LL, Karim NHA, Heng LY, Jamaluddin ND, Yusof NYM, et al.
    Talanta, 2019 Jun 01;198:358-370.
    PMID: 30876573 DOI: 10.1016/j.talanta.2019.02.036
    An optical genosensor based on Schiff base complex (Zn2+ salphen) DNA label and acrylic microspheres (AMs) as polymer support of the capturing DNA probe (cpDNA) was developed for dengue virus serotype 2 (DEN-2) detection via reflectance spectrophotometric method. The solid-state optical DNA biosensor showed high selectivity and specificity up to one-base mismatch in the target DNA sequence owing to the salphen chemical structure that is rich in localized electrons, and allowed π-π stacking interaction between stacked base pairs of double-stranded DNA (dsDNA). The reflectometric DNA microsensor demonstrated a broad linear detection range towards DEN-2 DNA from 1 × 10-15 M to 1 × 10-3 M with a low limit of detection (LOD) obtained at 1.21 × 10-16 M. The DNA biosensor gave reproducible optical response with a satisfactory relative standard deviation (RSD) at 3.1%, (n = 3), and the reflectance response was stable even after four regeneration cycles of the DNA biosensor. The optical genosensor was proven comparable with standard reverse transcription polymerase chain reaction (RT-PCR) in detecting DEN-2 genome acquired from clinical samples of serum, urine and saliva of dengue virus infected patients under informed consent. The developed reflectometric DNA biosensor is advantageous in offering an early DEN-2 diagnosis, when fever symptom started to manifest in patient.
    Matched MeSH terms: Dengue Virus/isolation & purification*
  15. Wan Sulaiman WA, Inche Mat LN, Hashim HZ, Hoo FK, Ching SM, Vasudevan R, et al.
    J Clin Neurosci, 2017 Sep;43:25-31.
    PMID: 28625589 DOI: 10.1016/j.jocn.2017.05.033
    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature.
    Matched MeSH terms: Dengue Virus
  16. Willeam Peter SS, Hassan SS, Khei Tan VP, Ngim CF, Azreen Adnan NA, Pong LY, et al.
    Vector Borne Zoonotic Dis, 2019 07;19(7):549-552.
    PMID: 30668248 DOI: 10.1089/vbz.2018.2379
    Background:
    There is an escalation of frequency and magnitude of dengue epidemics in Malaysia, with a concomitant increase in patient hospitalization. Prolonged hospitalization (PH) due to dengue virus (DENV) infections causes considerable socioeconomic burden. Early identification of patients needing PH could optimize resource consumption and reduce health care costs. This study aims to identify clinicopathological factors present on admission that are associated with PH among patients with DENV infections.
    Methods:
    This study was conducted in a tertiary referral hospital in Southern Malaysia. Relevant clinical and laboratory data upon admission were retrieved from medical records of 253 consecutive DENV nonstructural protein 1 (NS1) antigen and PCR-positive hospitalized patients. The DENV serotype present in each patient was determined. Patients were stratified based on duration of hospital stay (<4 vs. ≥4 days). Data were analyzed using IBM® SPSS® 25.0. Multivariate logistic regression was performed to examine the association between PH and admission parameters.
    Results:
    Of 253 DENV hospitalized patients, 95 (37.5%) had PH (≥4 days). The mean duration of hospital stay was 3.43 ± 2.085 days (median = 3 days, interquartile range = 7 days). Diabetes mellitus (adjusted odds ratio [AOR] = 6.261, 95% confidence interval [CI] = 2.130-18.406, p = 0.001), DENV-2 serotype (AOR = 2.581, 95% CI = 1.179-5.650, p = 0.018), duration of fever ≤4 days (AOR = 2.423, 95% CI = 0.872-6.734, p = 0.09), and a shorter preadmission fever duration (AOR = 0.679, 95% CI = 0.481-0.957, p = 0.027) were independently associated with PH. However, PH was not found to be associated with symptoms on admission, secondary DENV infections or platelet count, hematocrit, or liver enzyme levels on admission.
    Conclusions:
    Early identification of these factors at presentation may alert clinicians to anticipate and recognize challenges in treating such patients, leading to more focused management plans that may shorten the duration of hospitalization.
    Matched MeSH terms: Dengue Virus*
  17. Othman S, Rahman NA, Yusof R
    Trans R Soc Trop Med Hyg, 2010 Dec;104(12):806-8.
    PMID: 20800252 DOI: 10.1016/j.trstmh.2010.07.004
    In contrast to many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) class I pathway, flaviviruses have been shown to up-regulate the cell surface expression of MHC class I complex. The mechanism by which dengue virus (DV) achieves this up-regulation remains unclear. Our investigation on the HLA-A2 gene in human liver cells demonstrated that all four serotypes of dengue virus, DV1 to DV4, resulted in variable degrees of promoter induction. This illustrates the importance of MHC class I transcription regulation in primary infections by different DV serotypes that may have even greater impact in secondary infections, associated with increased disease severity.
    Matched MeSH terms: Dengue Virus/immunology*
  18. Mukhametov A, Newhouse EI, Aziz NA, Saito JA, Alam M
    J Mol Graph Model, 2014 Jul;52:103-13.
    PMID: 25023665 DOI: 10.1016/j.jmgm.2014.06.008
    The allosteric pocket of the Dengue virus (DENV2) NS2B/NS3 protease, which is proximal to its catalytic triad, represents a promising drug target (Othman et al., 2008). We have explored this binding site through large-scale virtual screening and molecular dynamics simulations followed by calculations of binding free energy. We propose two mechanisms for enzyme inhibition. A ligand may either destabilize electronic density or create steric effects relating to the catalytic triad residues NS3-HIS51, NS3-ASP75, and NS3-SER135. A ligand may also disrupt movement of the C-terminal of NS2B required for inter-conversion between the "open" and "closed" conformations. We found that chalcone and adenosine derivatives had the top potential for drug discovery hits, acting through both inhibitory mechanisms. Studying the molecular mechanisms of these compounds might be helpful in further investigations of the allosteric pocket and its potential for drug discovery.
    Matched MeSH terms: Dengue Virus/drug effects; Dengue Virus/enzymology*
  19. Othman R, Wahab HA, Yusof R, Rahman NA
    In Silico Biol. (Gedrukt), 2007;7(2):215-24.
    PMID: 17688447
    Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.
    Matched MeSH terms: Dengue Virus/chemistry*
  20. Chew MF, Tham HW, Rajik M, Sharifah SH
    J Appl Microbiol, 2015 Oct;119(4):1170-80.
    PMID: 26248692 DOI: 10.1111/jam.12921
    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action.
    Matched MeSH terms: Dengue Virus/classification; Dengue Virus/drug effects*; Dengue Virus/isolation & purification; Dengue Virus/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links