Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Al-Hashedi AA, Taiyeb-Ali TB, Yunus N
    Aust Dent J, 2016 06;61(2):208-18.
    PMID: 25966305 DOI: 10.1111/adj.12337
    BACKGROUND: Short dental implants can be an alternative to bone augmentation procedures at sites of reduced alveolar bone. Most studies on short implants are retrospective or multicentre reports that lack controlled and consistent comparison between different systems. This study aimed to compare clinical and radiographic outcomes of short implants in two different systems in the posterior mandible.

    METHODS: Twenty patients with two adjacent missing posterior teeth were recruited. Patients were assigned equally and randomly into two groups; Bicon(®) (6 or 8 mm) and Ankylos(®) (8 mm) implants. A two-stage surgical approach and single crowns were used for implant placement and loading. Outcomes included peri-implant clinical parameters, implant stability (Periotest values; PTVs) and peri-implant bone changes, which were assessed at baseline, 2, 6 and 12 months post-loading.

    RESULTS: No implant loss was encountered up to 12 months post-loading. No significant difference in the clinical or radiographic parameters was observed except for PTVs (p < 0.05) that was lower in Ankylos(®) implants.

    CONCLUSIONS: The use of short dental implants was associated with excellent 12 months clinical and radiographic outcomes. Ankylos(®) and Bicon(®) implants demonstrated similar peri-implant soft tissue and alveolar bone changes. However, Ankylos(®) implants demonstrated better implant stability at all evaluation intervals.

    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  2. Ueda M
    Med J Malaysia, 2004 May;59 Suppl B:29.
    PMID: 15468803
    Matched MeSH terms: Dental Implantation, Endosseous*
  3. Younis L, Taher A, Abu-Hassan MI, Tin O
    J Contemp Dent Pract, 2009;10(4):35-42.
    PMID: 19575052
    The purpose of this study was to compare bone healing and coronal bone remodeling following both immediate and delayed placement of titanium dental implants in extraction sockets.
    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  4. Rajan G, Baig MR, Nesan J, Subramanian J
    Indian J Dent Res, 2010 Jan-Mar;21(1):125-8.
    PMID: 20427922 DOI: 10.4103/0970-9290.62801
    Treatment of patients with aggressive periodontitis has always been a challenge to the clinician. Both young and old are known to be affected by this progressive destructive condition of the supporting dental structures. Although dental implants have been offered as a viable treatment alternative for such patients, additional procedures (like bone grafting) and delayed protocols have limited their usage. This case report describes the treatment of a young patient with aggressive periodontitis using a graftless implant solution. Zygoma implants in conjunction with conventional implants were used with immediate loading.
    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  5. Gupta K, Singh S, Singh S
    J Contemp Dent Pract, 2019 Aug 01;20(8):907-914.
    PMID: 31797846
    AIM: Assessing the accuracy of surgical guides generated with the help of a simple chair side ridge mapping technique by comparing the planned implant position with the achieved implant position on post-op computerized tomography scans.

    MATERIALS AND METHODS: In this study, 20 implant sites in patients were selected. Ridge mapping was done through a vacuum press template at three buccal (B1, B2, B3), three lingual (L1, L2, L3), and one crestal (C) points for each implant site. Readings were transferred onto the cast, and surgical guides were fabricated for implant placement. Postoperative cone beam computerized tomography (CBCT) was done to assess planned and achieved implant position. Comparison was done between soft tissue depths and implant distance from the crest of alveolar bone determined by the ridge mapping technique with measurements done on CBCT. The points used for ridge mapping were used as the reference for measurements. The data were analyzed using paired t test. p < 0.05 was considered to be statistically significant.

    RESULTS: On comparing the mean values of soft tissue depths from the ridge mapping and CBCT data, insignificant differences were found at B1, B2, L1, L2, L3, and C, but significant differences were found at B3. On comparing the implant distances from alveolar bone from both the data, insignificant differences were found at B, B2, B3, L1, L2, and L3 and significant difference was found at the crest in the mean values.

    CONCLUSION: Under the limitations of the above study, it can be concluded that a simple chairside procedure like ridge mapping can be used as an effective way for guided implant placement in sufficient available alveolar bone.

    Matched MeSH terms: Dental Implantation, Endosseous
  6. Baig MR, Rajan G
    Indian J Dent Res, 2010 Apr-Jun;21(2):311-3.
    PMID: 20657109 DOI: 10.4103/0970-9290.66635
    This article describes the immediate placement and loading of implants in the aesthetic zone using an implant-retained, fixed prosthesis with a modified design. One section of the implant prosthesis has cemented crowns and the other section is the conventional screw-retained. This combined approach significantly offsets the unsuitable implant position, alignment or angulation, while ensuring the easy retrievability, repair and maintenance of the prosthesis at the same time.
    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  7. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Dental Implantation, Endosseous
  8. Baig MR, Rajan G
    J Oral Implantol, 2010;36(1):31-5.
    PMID: 20218868 DOI: 10.1563/AAID-JOI-D-09-00062
    This article describes the dental implant-based rehabilitation of a partially edentulous patient with a unilateral maxillary dento-alveolar defect. A screw-retained prosthesis with a modified design was fabricated on zygomatic and regular dental implants. One section of the implant prosthesis has cemented crowns and the other section is conventional screw-retained. The design of the prosthesis overcame the hard and soft tissue deficit and provided the desired esthetics.
    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  9. Yunus, N., Rahman, Z.A.A.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    Tissue-integrated oral implants have opened-up a new perspective in oral rehabilitation of tumour patients who had undergone surgery. The present case demonstrated a simple approach to rehabilitate a patient who had subtotal maxillectomy using dental implant. The use of an implant in combination with a natural abutment tooth was shown to improve the retention and stability of the obturator. Magnetic attachment and telescopic restoration were the retainers of choice and they provided good aesthetic result.
    Matched MeSH terms: Dental Implantation, Endosseous
  10. Voon YS, Patil PG
    J Prosthet Dent, 2018 Apr;119(4):568-573.
    PMID: 28838820 DOI: 10.1016/j.prosdent.2017.05.011
    STATEMENT OF PROBLEM: The genial tubercle is a clinically palpable landmark in the mandible and can be identified in cone beam computed tomography (CBCT). Its location can be used to measure the safe zone in the interforaminal region of the mandible. These measurements may be helpful for implant treatment planning in patients with complete edentulism.

    PURPOSE: The purpose of this clinical study was to evaluate the safe distance in the interforaminal region of the mandible measured from the genial tubercle level for implant osteotomy in a Chinese-Malaysian population.

    MATERIAL AND METHODS: A total of 201 Digital Imaging and Communications in Medicine (DICOM) files were selected for the study from the CBCTs of dentate or edentulous Chinese-Malaysian adult patients with ongoing or completed treatments. Measurements were made with implant planning software. The anatomy of the whole mandible was assessed in the coronal cross-sectional, horizontal view and in panoramic view. Measurements were obtained in millimeters on one side by locating and marking a genial tubercle and then marking the mesial margin of the mental foramen and the anterior loop of the inferior alveolar nerve. The corresponding points of these landmarks were identified on the crest of the mandibular ridge to measure the linear distances. All the measurement steps were repeated on the other side. The linear distance of 2 mm was deducted from the total distance between the genial tubercle and the anterior loop separately for left and right side measurements to identify the safe zone. The mixed 2-way analysis of variance (ANOVA) test was used to analyze side and sex-related variations.

    RESULTS: The mean safe zone measured at the crestal level from the genial tubercle site on the left side of the mandible was 21.12 mm and 21.67 mm on the right side. A statistically significant (P

    Matched MeSH terms: Dental Implantation, Endosseous*
  11. Wong SK, Patil PG
    J Prosthet Dent, 2018 Aug;120(2):210-213.
    PMID: 29551376 DOI: 10.1016/j.prosdent.2017.10.019
    STATEMENT OF PROBLEM: The inferior alveolar nerve (IAN) frequently loops backward before exiting from the mental foramen and spreads several millimeters medially to the foramen. Implant placement in this area may damage the nerve if the anterior loop area is not carefully identified in a radiographic or computed tomography (CT) evaluation.

    PURPOSE: The purpose of this observational study was to measure the prevalence of the presence of the anterior loop and to estimate sex and ethnicity-related variations in anterior loop length in the Malaysian population.

    MATERIAL AND METHODS: A total of 100 cone beam computed tomography (CBCT) Digital Imaging and Communications in Medicine (DICOM) files were selected from a pool of 810 ongoing or completed patients in 3 different ethnic groups: Malay (33), Indian (33), and Chinese (34). The DICOM data were imported into commercial software. The IAN was traced with software along with the anterior loop and part of the incisive nerve. The vertical length of the nerve was estimated from the canal to the opening of the mental foramen from the cross-sectional view and translated to the panoramic view. Measurement was made from this point to the most anterior point of the anterior loop by following the trajectory of the nerve and was repeated on the opposite side. A 2-way mixed analysis of variance (ANOVA) test was carried out to evaluate the sex- and ethnicity-related variations (α=.05).

    RESULTS: The anterior loop was present in 94% of the 100 participants. Overall anterior loop length (AnLL) ranged between 0.73 and 7.99 mm with a mean length of 3.69 ±1.75 mm on the left side and 3.85 ±1.73 mm on the right side. Among all participants, no statistically significant differences were found between the left and right sides of the mandible (P=.379). Overall, no significant main effect of ethnicity (P=.869) or sex (P=.576) was found on AnLL measurements. Also, with multiple comparisons, no significant effect was found between each pair of ethnic groups. Men in all 3 ethnic groups had greater AnLL than women.

    CONCLUSIONS: The anterior loop was present in 94% of the 100 participants among the 3 major ethnic groups of Malaysia. Overall AnLL ranged between 0.73 and 7.99 mm and mean lengths of 3.69 ±1.75 mm on the left side and 3.85 ±1.73 mm on the right side, with no significant ethnicity- or sex-related variations.

    Matched MeSH terms: Dental Implantation, Endosseous*
  12. Parithimarkalaignan S, Padmanabhan TV
    J Indian Prosthodont Soc, 2013 Mar;13(1):2-6.
    PMID: 24431699 DOI: 10.1007/s13191-013-0252-z
    Osseointegration, defined as a direct structural and functional connection between ordered, living bone and the surface of a load-carrying implant, is critical for implant stability, and is considered a prerequisite for implant loading and long-term clinical success of end osseous dental implants. The implant-tissue interface is an extremely dynamic region of interaction. This complex interaction involves not only biomaterial and biocompatibility issues but also alteration of mechanical environment. The processes of osseointegration involve an initial interlocking between alveolar bone and the implant body, and later, biological fixation through continuous bone apposition and remodeling toward the implant. The process itself is quite complex and there are many factors that influence the formation and maintenance of bone at the implant surface. The aim of this present review is to analysis the current understanding of clinical assessments and factors that determine the success & failure of osseointegrated dental implants.
    Matched MeSH terms: Dental Implantation, Endosseous
  13. Siar CH, Toh CG, Ali TB, Seiz D, Ong ST
    Clin Oral Implants Res, 2012 Apr;23(4):438-46.
    PMID: 21435011 DOI: 10.1111/j.1600-0501.2010.02145.x
    A stable oral mucosa is crucial for long-term survival and biofunctionality of implants. Most of this evidence is derived from clinical and animal studies based solely on implant-supported prosthesis. Much less is known about the dimensions and relationships of this soft tissue complex investing tooth-implant-supported bridgework (TISB). The aim here was to obtain experimental evidence on the dimensional characteristics of oral mucosa around TISB with two different abutment designs.
    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  14. Siar CH, Toh CG, Romanos G, Swaminathan D, Ong AH, Yaacob H, et al.
    J. Periodontol., 2003 May;74(5):571-8.
    PMID: 12816287
    Today, one critical goal in implant placement is the achievement of optimal soft tissue integration. Reports thus far have demonstrated successful soft tissue preservation in delayed loaded implants placed in anterior jaws. The aim of this study was to histomorphometrically examine the soft tissues around immediately loaded implants placed in the macaque posterior mandible.
    Matched MeSH terms: Dental Implantation, Endosseous/methods
  15. Mustafa A, Lung CY, Mustafa NS, Mustafa BA, Kashmoola MA, Zwahlen RA, et al.
    Clin Oral Implants Res, 2016 Mar;27(3):303-9.
    PMID: 25393376 DOI: 10.1111/clr.12525
    OBJECTIVES: To investigate the effect of eicosapentaenoic acid (EPA)-coated Ti implants on osteoconduction in white New Zealand rabbit mandibles.

    MATERIAL AND METHODS: Sandblasted and cleansed planar titanium specimens with a size of 5 × 5 × 1 mm were coated on one side with 0.25 vol% eicosapentaenoic acid (EPA). The other side of the specimens was kept highly polished (the control side). These specimens were inserted in rabbit mandibles. Twelve rabbits were randomly assigned into three study groups (n = 4). The rabbits were sacrificed at 4, 8, and 12 weeks. The harvested specimens with the implants were assessed for new bone formation on both sides of the implant using CBCT, conventional radiographs, and the biaxial pullout test. The results were statistically analyzed by a nonparametric Kruskal-Wallis test and Friedman's test as multiple comparisons and by Brunner-Langer nonparametric mixed model approach (R Software).

    RESULTS: A significant osteoconductive bone formation was found on the EPA-coated Ti implant surface (P < 0.05) at 8 weeks when compared to the polished surface (control). Biaxial pullout test results showed a significant difference (P < 0.05) after 8 and 12 weeks with a maximum force of 243.8 N, compared to 143.25 N after 4 week.

    CONCLUSION: EPA implant coating promoted osteoconduction on the Ti implant surfaces, enhancing the anchorage of the implant to the surrounding bone in white New Zealand rabbits.

    Matched MeSH terms: Dental Implantation, Endosseous/methods*
  16. Khalid T, Yunus N, Ibrahim N, Elkezza A, Masood M
    Clin Oral Implants Res, 2017 May;28(5):535-542.
    PMID: 26989853 DOI: 10.1111/clr.12831
    OBJECTIVE: To determine oral health-related quality of life (OHRQoL) and denture satisfaction (DS) in patients provided with mandibular implant-supported overdentures (ISOD) retained by two different attachment types, and the association of mandibular bone volume with the change in patient-reported outcome, before and after implant treatment.

    MATERIAL AND METHODS: Thirty-four patients (mean age 60.70  ±  8.7 years) received telescopic crown or locator attachments for ISOD and completed OHIP-14 (Malaysian version) and DS questionnaires, at baseline (T0 ) with new conventional complete dentures (CCD) and 3 months (T1 ) and 3 years (T2 ) after ISOD conversion. Mandibular bone volume was calculated from cone beam computed tomography (CBCT) datasets using Mimics software. Mean changes (MC) in OHIP-14 and DS at intervals were analyzed using the Wilcoxon signed-rank test and effect size (ES). The association of bone volume, implant attachment type, and other patient variables with the change in OHIP-14 and DS were determined using multivariate linear regression analysis.

    RESULTS: The MC in OHIP-14 and DS scores from T0 to T1 and T2 showed significant improvement with moderate and large ES, respectively. Regression analyses for the change in OHIP-14 score from T0 to T2 showed significant association with implant attachment type (P = 0.043), bone volume (P = 0.004), and baseline OHIP-14 (P = 0.001), while for DS, the association was only significant with baseline DS score (P = 0.001).

    CONCLUSION: Improvement in patients' OHRQoL and satisfaction with ISOD was associated with their baseline ratings. Mandibular bone volume had a stronger association for improvement in OHRQoL compared to type of attachment.

    Matched MeSH terms: Dental Implantation, Endosseous/methods
  17. Qabbani AA, Bayatti SWA, Hasan H, Samsudin AB, Kawas SA
    J Craniofac Surg, 2020 1 3;31(3):e233-e236.
    PMID: 31895847 DOI: 10.1097/SCS.0000000000006106
    To evaluate the ability of the maxillary sinus membrane to produce bone after internal sinus lifting and implant placement without adding exogenous bone graft, and to assess the quality of bone that has been produced 6 months postoperatively.In this retrospective study, 10 subjects who underwent maxillary sinus floor lifting and met the inclusion criteria were selected and then subdivided into: Group-A underwent internal sinus elevation and placement of implants without the use of bone graft and Group-B underwent classical internal sinus lifting and placement of bovine bone particles and then placement of the implant as a control group. Radiofrequency analysis (RFA) values for measuring the Implant Stability Quotient (ISQ) of all implants were measured by Osstell device. CBCT was performed involving linear measurements of the site of sinus lifting for both groups.High RFA values demonstrating excellent biomechanical stability were observed in Group-A compared to Group-B at 6 months postoperatively. Group-A showed a median of ISQ value;78 (8), 77(12), 79(3.5) and 77(4.50). Group-A was significantly higher in ISQ values than Group-B, which showed median and interquartile range (IQR) of ISQ value of [51(12.50), 54(14.50), 55(9), and 55(7.50)]. However, the amount of bone available in group B was significantly higher than group A; [3.5 mm (0.75) and 3.8 mm (0.69)].Internal sinus lifting without bone graft has the ability of bone formation by osteogenic potential of the sinus membrane. Nevertheless, the high quality of bone being produced is of high importance for the success of an implant without the need for an exogenous bone graft. The newly formed bone was significantly of a better quality in Group-A. Thus, it is recommended to perform internal sinus lifting, without adding bone graft material and allow the osteogenic potential of the maxillary sinus membrane to produce its own osteogenic cells.
    Matched MeSH terms: Dental Implantation, Endosseous
  18. Tarib NA, Seong TW, Chuen KM, Kun MS, Ahmad M, Kamarudin KH
    Eur J Prosthodont Restor Dent, 2012 Mar;20(1):35-9.
    PMID: 22474935
    This paper aims to evaluate the effect of splinting during implant impression. A master model with two fixtures at the sites of 45 and 47 was used. 20 impressions were made for all four techniques: (A) indirect; (B) direct, unsplinted; (C) direct, splinted; and (D) direct, splinted, sectioned, and re-splinted. Splinting was undertaken with autopolymerizing acrylic resin (AAR). Horizontal distance between fixtures was compared using a digital caliper. The difference in distance were analysed with one-way ANOVA. Group A showed a significantly lowest accuracy among all techniques (p < or = 0.05). There was no significant difference of accuracy among the groups using direct techniques (p > or = 0.05). Group D was more accurate compared to group B and C. We conclude that splinting of impression copings would be beneficial to obtain an accurate impression.
    Matched MeSH terms: Dental Implantation, Endosseous*
  19. Al-Juboori MJ, AbdulRahaman SB, Hassan A
    Implant Dent, 2013 Aug;22(4):351-5.
    PMID: 23811720 DOI: 10.1097/ID.0b013e318296583d
    To detect the correlation between crestal bone resorption and implant stability during healing period using resonance frequency analysis (RFA).
    Matched MeSH terms: Dental Implantation, Endosseous/methods
  20. Yunus N, Abdullah H, Hanapiah F
    J Prosthet Dent, 2001 Jun;85(6):540-3.
    PMID: 11404753
    This article describes the occlusal rehabilitation of a partially edentulous patient who did not want a removable partial denture. Implants and extensive fixed restorations were used to restore posterior support and treat severely worn dentition, respectively. The treatment offered the patient a functional and esthetic result.
    Matched MeSH terms: Dental Implantation, Endosseous
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links