Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Liao TZ, Chen YH, Tsai JN, Chao C, Huang TP, Hong CF, et al.
    Plant Dis, 2023 Jul;107(7):2039-2053.
    PMID: 36428260 DOI: 10.1094/PDIS-06-22-1285-RE
    Brown root rot disease (BRRD), caused by Phellinus noxius, is an important tree disease in tropical and subtropical areas. To improve chemical control of BRRD and deter emergence of fungicide resistance in P. noxius, this study investigated control efficacies and systemic activities of fungicides with different modes of action. Fourteen fungicides with 11 different modes of action were tested for inhibitory effects in vitro on 39 P. noxius isolates from Taiwan, Hong Kong, Malaysia, Australia, and Pacific Islands. Cyproconazole, epoxiconazole, and tebuconazole (Fungicide Resistance Action Committee [FRAC] 3, target-site G1) inhibited colony growth of P. noxius by 99.9 to 100% at 10 ppm and 97.7 to 99.8% at 1 ppm. The other effective fungicide was cyprodinil + fludioxonil (FRAC 9 + 12, target-site D1 + E2), which showed growth inhibition of 96.9% at 10 ppm and 88.6% at 1 ppm. Acropetal translocation of six selected fungicides was evaluated in bishop wood (Bischofia javanica) seedlings by immersion of the root tips in each fungicide at 100 ppm, followed by liquid or gas chromatography tandem mass spectrometry analyses of consecutive segments of root, stem, and leaf tissues at 7 and 21 days posttreatment. Bidirectional translocation of the fungicides was also evaluated by stem injection of fungicide stock solutions. Cyproconazole and tebuconazole were the most readily absorbed by roots and efficiently transported acropetally. Greenhouse experiments suggested that cyproconazole, tebuconazole, and epoxiconazole have a slightly higher potential for controlling BRRD than mepronil, prochloraz, and cyprodinil + fludioxonil. Because all tested fungicides lacked basipetal translocation, soil drenching should be considered instead of trunk injection for their use in BRRD control.
    Matched MeSH terms: Epoxy Compounds
  2. Alam MS, Islam MT, Arshad H
    ScientificWorldJournal, 2014;2014:159468.
    PMID: 24883354 DOI: 10.1155/2014/159468
    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design.
    Matched MeSH terms: Epoxy Compounds*
  3. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R
    Molecules, 2012 Sep 12;17(9):10974-93.
    PMID: 22971583 DOI: 10.3390/molecules170910974
    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  4. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, et al.
    Int J Biol Macromol, 2017 Sep;102:822-828.
    PMID: 28455253 DOI: 10.1016/j.ijbiomac.2017.04.074
    The current study presents about the effect of cellulose nanofibers (CNFs) filler on the thermal and dynamic mechanical analysis (DMA) of epoxy composites as a function of temperature. In this study hand lay-up method was used to fabricate CNF reinforced Epoxy nanocomposites with CNF loading of 0.5%, 0.75%, and 1% into epoxy resin. The obtained thermal and DMA results illustrates that thermal stability, char content, storage modulus (E'), loss modulus (E") and glass transition temperature (Tg) increases for all CNF/epoxy nanocomposites compared to the pure epoxy. Thermal results revealed that 0.75% offers superior resistance or stability towards heat compared to its counterparts. In addition, 0.75% CNF/epoxy nanocomposites confers highest value of storage modulus as compared to 0.5% and 1% filler loading. Hence, it is concluded that 0.75% CNFs loading is the minimal to enhance both thermal and dynamic mechanical properties of the epoxy composites and can be utilized for advance material applications where thermal stability along with renewability are prime requirements.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  5. Kamairudin N, Hoong SS, Abdullah LC, Ariffin H, Biak DRA
    Molecules, 2021 Jan 27;26(3).
    PMID: 33513686 DOI: 10.3390/molecules26030648
    The development of bio-polyol from vegetable oil and its derivatives is gaining much interest from polyurethane industries and academia. In view of this, the availability of methyl oleate derived from palm oil, which is aimed at biodiesel production, provides an excellent feedstock to produce bio-polyol for polyurethane applications. In this recent study, response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) was used to optimise the reaction parameters in order to obtain a maximised hydroxyl value (OHV). Three reaction parameters were selected, namely the mole ratio of epoxidised methyl oleate (EMO) to glycerol (1:5-1:10), the amount of catalyst loading (0.15-0.55%) and reaction temperature (90-150 °C) on a response variable as the hydroxyl value (OHV). The analysis of variance (ANOVA) indicated that the quadratic model was significant at 98% confidence level with (p-value > 0.0001) with an insignificant lack of fit and the regression coefficient (R2) was 0.9897. The optimum reaction conditions established by the predicted model were: 1:10 mole ratio of EMO to glycerol, 0.18% of catalyst and 120 °C reaction temperature, giving a hydroxyl value (OHV) of 306.190 mg KOH/g for the experimental value and 301.248 mg KOH/g for the predicted value. This result proves that the RSM model is capable of forecasting the relevant response. FTIR analysis was employed to monitor the changes of functional group for each synthesis and the confirmation of this finding was analysed by NMR analysis. The viscosity and average molecular weight (MW) were 513.48 mPa and 491 Da, respectively.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  6. Negim el-S, Kozhamzharova L, Khatib J, Bekbayeva L, Williams C
    ScientificWorldJournal, 2014;2014:942978.
    PMID: 24955426 DOI: 10.1155/2014/942978
    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
    Matched MeSH terms: Epoxy Compounds/chemistry
  7. Azman NZ, Siddiqui SA, Low IM
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4952-7.
    PMID: 24094209 DOI: 10.1016/j.msec.2013.08.023
    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  8. Dzuhri S, Yuhana N, Khairulazfar M
    Sains Malaysiana, 2015;44:441-448.
    This study utilized the incorporation of nanoparticle filler into an epoxy system to study the effect of different nanosized
    montmorillonite (MMT) fillers on the thermal stability and mechanical properties of epoxy. The sample was prepared
    using diglycidyl ether of bisphenol A (DGEBA) with different surface treatments of montmorillonite filler by mechanical
    stirring. The results of thermal stability and mechanical properties of epoxy/clay system obtained from thermal gravimetric
    analyzer (TGA), universal testing machine (UTM) and scanning electron microscopy (SEM) were discussed. With the same
    amount of filler introduced into the system, different thermal stability of epoxy composite can be observed. Bentonite,
    which contained other contaminant components, can downgrade the enhanced properties of the filler.
    Matched MeSH terms: Epoxy Compounds
  9. Abdulmalek E, Arumugam M, Mizan HN, Abdul Rahman MB, Basri M, Salleh AB
    ScientificWorldJournal, 2014;2014:756418.
    PMID: 24587751 DOI: 10.1155/2014/756418
    Here, we focused on a simple enzymatic epoxidation of alkenes using lipase and phenylacetic acid. The immobilised Candida antarctica lipase B, Novozym 435 was used to catalyse the formation of peroxy acid instantly from hydrogen peroxide (H2O2) and phenylacetic acid. The peroxy phenylacetic acid generated was then utilised directly for in situ oxidation of alkenes. A variety of alkenes were oxidised with this system, resulting in 75-99% yield of the respective epoxides. On the other hand, the phenylacetic acid was recovered from the reaction media and reused for more epoxidation. Interestingly, the waste phenylacetic acid had the ability to be reused for epoxidation of the 1-nonene to 1-nonene oxide, giving an excellent yield of 90%.
    Matched MeSH terms: Epoxy Compounds/chemical synthesis*; Epoxy Compounds/chemistry
  10. Abdulmalek E, Arumugam M, Basri M, Rahman MB
    Int J Mol Sci, 2012;13(10):13140-9.
    PMID: 23202943 DOI: 10.3390/ijms131013140
    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%-99%) under the optimum reaction conditions, including temperature (35 °C), initial H(2)O(2) concentration (30%), H(2)O(2) amount (4.4 mmol), H(2)O(2) addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H(2)O(2) with a catalytic activity of 190.0 Ug-1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.
    Matched MeSH terms: Epoxy Compounds/metabolism*; Epoxy Compounds/chemistry
  11. Marniemi J, Parkki MG
    Biochem Pharmacol, 1975 Sep 01;24(17):1569-72.
    PMID: 9
    Matched MeSH terms: Epoxy Compounds/metabolism; Epoxy Compounds/pharmacology
  12. Al-Mansob RA, Ismail A, Yusoff NI, Rahmat RA, Borhan MN, Albrka SI, et al.
    PLoS One, 2017;12(2):e0171648.
    PMID: 28182724 DOI: 10.1371/journal.pone.0171648
    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.
    Matched MeSH terms: Epoxy Compounds/chemical synthesis; Epoxy Compounds/chemistry*
  13. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Epoxy Compounds/chemical synthesis*; Epoxy Compounds/chemistry
  14. Mohammad Anwar Mohamed Iqbal, Muhammad Zulhelmi Nazri, Mohammad Norazmi Ahmad, Erna Normaya Abdullah, Umie Fatihah Mohamad Haziz, Mohd Rizal Razali, et al.
    Science Letters, 2020;14(2):71-84.
    MyJurnal
    Silver (I) dicyanonitrosomethanide, Ag[ONC(CN)2] represent a 3D interwoven coordination polymer organization in which all the donor atoms of the functional groups of ONC(CN)2- are coordinated to the Ag(I). Oxidation of styrene utilizing H2O2 as an oxidant in acetonitrile (CH3CN) was used as a model reaction to investigate the catalytic potential of the Ag (I) complex. The CH3CN was chosen as the solvent based on the data collected from Conductor like Screening Model for Real Solvents (COSMO-RS) study. The data indicate that the Ag [ONC(CN)2] complex was compatible and soluble in CH3CN. Different parameters such as styrene:H2O2 molar ratio, reaction time, catalyst mass, and reaction temperature were studied. Highest styrene conversion (36%) with 100% selectivity towards benzaldehyde (BZ) was achieved when 25 mg catalyst, 1:1 styrene to H2O2 molar ratio were used. The reaction was carried out at 303 K for 3 h. The catalytic conversion of styrene to BZ is proposed to take place via [Ag-H2O2] adduct with styrene oxide (StO) as an intermediate. Molecular Electrostatic Potential (MEP) shows that the Ag atom has the highest probability to coordinate with the oxygen atom of H2O2. The MEP data confirms the proposed mechanism.
    Matched MeSH terms: Epoxy Compounds
  15. Leong YK, Chang CK, Arumugasamy SK, Lan JC, Loh HS, Muhammad D, et al.
    Polymers (Basel), 2018 Jan 30;10(2).
    PMID: 30966168 DOI: 10.3390/polym10020132
    At present, polyhydroxyalkanoates (PHAs) have been considered as a promising alternative to conventional plastics due to their diverse variability in structure and rapid biodegradation. To ensure cost competitiveness in the market, thermoseparating aqueous two-phase extraction (ATPE) with the advantages of being mild and environmental-friendly was suggested as the primary isolation and purification tool for PHAs. Utilizing two-level full factorial design, this work studied the influence and interaction between four independent variables on the partitioning behavior of PHAs. Based on the experimental results, feed forward neural network (FFNN) was used to develop an empirical model of PHAs based on the ATPE thermoseparating input-output parameter. In this case, bootstrap resampling technique was used to generate more data. At the conditions of 15 wt % phosphate salt, 18 wt % ethylene oxide⁻propylene oxide (EOPO), and pH 10 without the addition of NaCl, the purification and recovery of PHAs achieved a highest yield of 93.9%. Overall, the statistical analysis demonstrated that the phosphate concentration and thermoseparating polymer concentration were the most significant parameters due to their individual influence and synergistic interaction between them on all the response variables. The final results of the FFNN model showed the ability of the model to seamlessly generalize the relationship between the input⁻output of the process.
    Matched MeSH terms: Epoxy Compounds
  16. Afreen S, Muthoosamy K, Manickam S
    Ultrason Sonochem, 2019 Mar;51:451-461.
    PMID: 30224290 DOI: 10.1016/j.ultsonch.2018.07.015
    The main objective of this review is to derive the salient features of previously developed ultrasound-assisted methods for hydroxylating graphene and Buckminsterfullerene (C60). The pros and cons associated to ultrasound-assisted synthesis of hydroxy-carbon nanomaterials in designing the strategical methods for the industrial bulk production are also discussed. A guideline on the statistical methods has also been considered to further provide the scopes towards the application of the previously reported methods. Irrespective of many useful methods that have been developed in order to functionalize C60 and graphene by diverse oxygenated functional groups e.g. epoxide, hydroxyl, carboxyl as well as metal/metal oxide via a combination of organic chemistry and sonochemistry, there is no report dealing exclusively on the application of ultrasonic cavitation particularly to synthesising polyhydroxylated carbon nanomaterials. On this context, this review emphasizes in investigating the critical aspects of sono-nanochemistry and the statistical approaches to optimize the variables in the sonochemical process towards a large-scale synthesis of polyhydroxylated graphene and C60.
    Matched MeSH terms: Epoxy Compounds
  17. Amid M, Manap Y, Zohdi NK
    Molecules, 2014 May 22;19(5):6635-50.
    PMID: 24858097 DOI: 10.3390/molecules19056635
    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.
    Matched MeSH terms: Epoxy Compounds/chemistry
  18. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA
    Molecules, 2012 Oct 08;17(10):11729-47.
    PMID: 23044711 DOI: 10.3390/molecules171011729
    Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  19. Giita Silverajah VS, Ibrahim NA, Yunus WM, Hassan HA, Woei CB
    Int J Mol Sci, 2012;13(5):5878-98.
    PMID: 22754338 DOI: 10.3390/ijms13055878
    In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
    Matched MeSH terms: Epoxy Compounds/chemistry*
  20. Chieng BW, Ibrahim NA, Yunus WM, Hussein MZ, Giita Silverajah VS
    Int J Mol Sci, 2012;13(9):10920-34.
    PMID: 23109829 DOI: 10.3390/ijms130910920
    Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).
    Matched MeSH terms: Epoxy Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links