Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Abuelhassan NN, Mutalib SA, Gimba FI, Yusoff WM
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17553-62.
    PMID: 27234829 DOI: 10.1007/s11356-016-6954-0
    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak of food-borne disease. The isolation of pathogenic E. coli strains from the imported meat samples calls for prudent management of imported meats by the relevant authorities.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  2. Afiqah RN, Paital B, Kumar S, Majeed AB, Tripathy M
    J. Mol. Recognit., 2016 11;29(11):544-554.
    PMID: 27406464 DOI: 10.1002/jmr.2554
    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry
  3. Ahmad KA, Mohanmmed AS, Abas F, Chin SC
    Virol Sin, 2015 Feb;30(1):73-5.
    PMID: 25662886 DOI: 10.1007/s12250-014-3541-8
    Matched MeSH terms: Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism
  4. Aklilu E, Raman K
    Int J Microbiol, 2020;2020:8853582.
    PMID: 32774381 DOI: 10.1155/2020/8853582
    This study was conducted to detect the presence of colistin-resistant Escherichia coli (E. coli) in raw chicken meat and bean sprouts collected from local markets and to determine the antimicrobial resistance patterns of the E. coli isolates. A total of 100 samples, comprised of 50 raw chicken meat and 50 bean sprouts, were collected and processed. Kirby-Bauer method was used to determine the antimicrobial resistance patterns, and PCR amplification was used to detect E. coli species-specific and colistin resistance (mcr-1 and mcr-2) genes. The results showed that 52.1% (12/23) of the E. coli isolated from raw chicken meat were positive for the colistin resistance encoding gene, mcr-1, whereas all the E. coli isolates from bean sprouts were negative for colistin resistance encoding genes. The findings show that chicken meat contaminated with colistin-resistant E. coli may pose public health risk to the consumers. Hence, prudent usage of antibiotics and hygienic handling of food items helps to prevent and combat the risks of spreading of colistin-resistant E. coli and the public health risks it may pose. More comprehensive and large-scale studies focusing on all the possible sources of colistin-resistant E. coli are recommended.
    Matched MeSH terms: Escherichia coli Proteins
  5. Ali SA, Chew YW, Omar TC, Azman N
    PLoS One, 2015;10(12):e0144189.
    PMID: 26642325 DOI: 10.1371/journal.pone.0144189
    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.
    Matched MeSH terms: Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism*
  6. Asi AM, Rahman NA, Merican AF
    J Mol Graph Model, 2004 Mar;22(4):249-62.
    PMID: 15177077
    Protein-ligand binding free energy values of wild-type and mutant C-terminal domain of Escherichia coli arginine repressor (ArgRc) protein systems bound to L-arginine or L-citrulline molecules were calculated using the linear interaction energy (LIE) method by molecular dynamics (MD) simulation. The binding behaviour predicted by the dissociation constant (K(d)) calculations from the binding free energy values showed preferences for binding of L-arginine to the wild-type ArgRc but not to the mutant ArgRc(D128N). On the other hand, L-citrulline do not favour binding to wild-type ArgRc but prefer binding to mutant ArgRc(D128N). The dissociation constant for the wild-type ArgRc-L-arginine complex obtained in this study is in agreement with reported experimental results. Our results also support the experimental data for the binding of L-citrulline to the mutant ArgRc(D128N). These showed that LIE method for protein-ligand binding free energy calculation could be applied to the wild-type and the mutant E. coli ArgRc-L-arginine and ArgRc-L-citrulline protein-ligand complexes and possibly to other transcriptional repressor-co-repressor systems as well.
    Matched MeSH terms: Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism*
  7. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  8. Cheong YM, Jegathesan M, Ansary A, Othman M
    Med J Malaysia, 1990 Mar;45(1):42-8.
    PMID: 2152068
    The prevalence of Enterotoxigenic Escherichia coli (ETEC) in 433 stool samples from diarrhoeal cases of all ages was studied using two commercially available test kits for the detection of heat labile toxin (LT) and the infant mouse assay for the heat stable toxin (ST). 16 samples (3.7%) were positive for ETEC, of which nine were producing ST alone, six LT alone and only one was producing both LT and ST. Although the percentage of isolation rate was low, its occurrence was almost as common as the Shigella spp and Salmonella spp in the same study. Of the two test kits examined, the Phadebact ETEC-LT Test 50 (Pharmacia Diagnostics, Uppsala, Sweden) was found to be more suitable for use in a routine diagnostic laboratory. Ten out of 12 (83%) of the strains tested were resistant to one or more antibiotics.
    Matched MeSH terms: Escherichia coli Proteins*
  9. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
    Matched MeSH terms: Escherichia coli Proteins/chemistry
  10. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, et al.
    mBio, 2017 10 24;8(5).
    PMID: 29066548 DOI: 10.1128/mBio.01558-17
    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
    Matched MeSH terms: Escherichia coli Proteins/genetics*; Escherichia coli Proteins/isolation & purification; Escherichia coli Proteins/metabolism
  11. Goulter RM, Taran E, Gentle IR, Gobius KS, Dykes GA
    Colloids Surf B Biointerfaces, 2014 Jul 1;119:90-8.
    PMID: 24880987 DOI: 10.1016/j.colsurfb.2014.04.003
    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.
    Matched MeSH terms: Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry*
  12. Hancock SJ, Phan MD, Peters KM, Forde BM, Chong TM, Yin WF, et al.
    PMID: 27872077 DOI: 10.1128/AAC.01740-16
    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies.
    Matched MeSH terms: Escherichia coli Proteins/genetics
  13. Heidary S, Rahim RA, Eissazadeh S, Moeini H, Chor AL, Abdullah MP
    Biotechnol Lett, 2014 Jul;36(7):1479-84.
    PMID: 24652546 DOI: 10.1007/s10529-014-1504-7
    The periplasmic proteome of recombinant E. coli cells expressing human interferon-α2b (INF-α2b) was analysed by 2D-gel electrophoresis to find the most altered proteins. Of some unique up- and down-regulated proteins in the proteome, ten were identified by MS. The majority of the proteins belonged to the ABC transporter protein family. Other affected proteins were ones involved in the regulation of transcription such as DNA-binding response regulator, stress-related proteins and ecotin. Thus, the production of INF-α2b acts as a stress on the cells and results in the induction of various transporters and stress related proteins.
    Matched MeSH terms: Escherichia coli Proteins/analysis*
  14. Ho WS, Ou HY, Yeo CC, Thong KL
    BMC Genomics, 2015;16:199.
    PMID: 25879448 DOI: 10.1186/s12864-015-1421-8
    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands.
    Matched MeSH terms: Escherichia coli Proteins/classification; Escherichia coli Proteins/genetics*
  15. Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS
    BMC Biotechnol, 2020 Jun 17;20(1):31.
    PMID: 32552895 DOI: 10.1186/s12896-020-00628-9
    BACKGROUND: Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin.

    RESULTS: In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64- cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64- cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability.

    CONCLUSIONS: HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.

    Matched MeSH terms: Escherichia coli Proteins
  16. Kaikabo AA, AbdulKarim SM, Abas F
    Poult Sci, 2017 Feb 01;96(2):295-302.
    PMID: 27702916 DOI: 10.3382/ps/pew255
    Disease inflicted by avian pathogenic Escherichia coli (APEC) causes economic losses and burden to the poultry industry worldwide. In this study, the efficacy of chitosan nanoparticles loaded ΦKAZ14 (C-ΦKAZ14 NPs) as an oral biological therapy for Colibacillosis was evaluated. C-ΦKAZ14 NPs containing 10(7) PFU/ml of ΦKAZ14 (Myoviridae; T4-like coliphage) bacteriophage were used to treat experimentally APEC-infected COBB 500 broiler chicks. C-ΦKAZ14 NPs and ΦKAZ14 bacteriophage were administered orally in a single dose. The clinical symptoms, mortality, and pathology in the infected birds were recorded and compared with those of control birds that did not receive C-ΦKAZ14 NPs or naked ΦKAZ14 bacteriophage. The results showed that C-ΦKAZ14 NP intervention decreased mortality from 58.33 to 16.7% with an increase in the protection rate from 42.00 to 83.33%. The bacterial colonization of the intestines of infected birds was significantly higher in the untreated control than in the C-ΦKAZ14 NP-treated group (2.30×10(9) ± 0.02 and 0.79×10(3) ± 0.10 CFU/mL, respectively) (P ≤ 0.05). Similarly, a significant difference in the fecal shedding of Escherichia coli was observed on d 7 post challenge between the untreated control and the C-ΦKAZ14 NP-treated group (2.35×10(9) ± 0.05 and 1.58×10(3) ± 0.06 CFU/mL, respectively) (P ≤ 0.05). Similar trends were observed from d 14 until d 21 when the experiment was terminated. Treatment with C-ΦKAZ14 NPs improved the body weights of the infected chicks. A difference in body weight on d 7 post challenge was observed between the untreated control and the C-ΦKAZ14 NP-treated group (140 ± 20 g and 160 ± 20 g, respectively). The increase was significant (P ≤ 0.05) on d 21 between the 2 groups (240 ± 30 g and 600 ± 80 g, respectively). Consequently, the clinical signs and symptoms were ameliorated upon treatment with C-ΦKAZ14 NPs compared with infected untreated birds. In all, based on the results, it can be concluded that the encapsulation of bacteriophage could enhance bacteriophage therapy and is a valuable approach for controlling APEC infections in poultry.
    Matched MeSH terms: Escherichia coli Proteins
  17. Kueh R, Rahman NA, Merican AF
    J Mol Model, 2003 Apr;9(2):88-98.
    PMID: 12707802
    The arginine repressor (ArgR) of Escherichia coli binds to six L-arginine molecules that act as its co-repressor in order to bind to DNA. The binding of L-arginine molecules as well as its structural analogues is compared by means of computational docking. A grid-based energy evaluation method combined with a Monte Carlo simulated annealing process was used in the automated docking. For all ligands, the docking procedure proposed more than one binding site in the C-terminal domain of ArgR (ArgRc). Interaction patterns of ArgRc with L-arginine were also observed for L-canavanine and L-citrulline. L-lysine and L-homoarginine, on the other hand, were shown to bind poorly at the binding site. Figure A general overview of the sites found from docking the various ligands into ArgRc ( grey ribbons). Red coloured sticks: residues in binding site H that was selected for docking
    Matched MeSH terms: Escherichia coli Proteins/chemistry*
  18. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Microbiol Immunol Infect, 2016 Aug;49(4):591-4.
    PMID: 26212311 DOI: 10.1016/j.jmii.2015.06.002
    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  19. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  20. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Escherichia coli Proteins/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links