Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, et al.
    J Biotechnol, 2020 Jan 10;307:55-62.
    PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008
    Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
    Matched MeSH terms: Fungal Proteins/genetics
  2. Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 11 01;72(Pt 11):831-839.
    PMID: 27827354
    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.
    Matched MeSH terms: Fungal Proteins/genetics
  3. Noorbatcha IA, Sultan AM, Salleh HM, Amid A
    Protein J, 2013 Apr;32(4):309-16.
    PMID: 23636517 DOI: 10.1007/s10930-013-9489-y
    Molecular dynamics simulation was used to study the dynamic differences between native Aspergillus niger PhyA phytase and a mutant with 20 % greater thermostability. Atomic root mean square deviation, radius of gyration, and number of hydrogen bonds and salt bridges are examined to determine thermostability factors. The results suggest that, among secondary structure elements, loops have the most impact on the thermal stability of A. niger phytase. In addition, the location rather than the number of hydrogen bonds is found to have an important contribution to thermostability. The results also show that salt bridges may have stabilizing or destabilizing effect on the enzyme and influence its thermostability accordingly.
    Matched MeSH terms: Fungal Proteins/genetics
  4. Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP
    J Appl Microbiol, 2014 Sep;117(3):854-65.
    PMID: 24909754 DOI: 10.1111/jam.12562
    This study was conducted to identify antigenic proteins of Candida tropicalis that are targeted by the host immune system.
    Matched MeSH terms: Fungal Proteins/genetics
  5. Looi CY, D' Silva EC, Seow HF, Rosli R, Ng KP, Chong PP
    FEMS Microbiol Lett, 2005 Aug 15;249(2):283-9.
    PMID: 16006060
    The aims of our research were to investigate the gene expression of the multidrug efflux transporter, CDR1 and the major drug facilitator superfamily transporter, MDR1 gene in azole drug-resistant Candida albicans and Candida glabrata clinical isolates recovered from vaginitis patients; and to identify hotspot mutations that may be present in the C. albicans CaCDR1 gene that could be associated with drug-resistance. The relative expression of the CDR1 and MDR1 transcripts in ketoconazole and clotrimazole-resistant isolates and drug-susceptible ATCC strains were determined by semi-quantitative reverse transcription-polymerase chain reaction. Expression of CaCDR1 transcript was upregulated to varying extents in all three azole-resistant C. albicans isolates studied (1.6-, 3.7- and 3.9-fold) and all three C. glabrata isolates tested (at 1.9-, 2.3- and 2.7-fold). The overexpression level of CaCDR1 in the isolates correlated with the degree of resistance as reflected by the minimum inhibitory concentration (MIC) of the drugs. The messenger RNA for another efflux pump, MDR1, was also overexpressed in one of the azole-resistant C. albicans isolates that overexpressed CDR1. This finding suggests that drug-resistance may involve synergy between energy-dependent drug efflux pumps CDR1p and MDR1p in some but not all isolates. Interestingly, DNA sequence analysis of the promoter region of the CaCDR1 gene revealed several point mutations in the resistant clinical isolates compared to the susceptible isolates at 39, 49 and 151 nucleotides upstream from the ATG start codon. This finding provides new information on point mutations in the promoter region which may be responsible for the overexpression of CDR1 in drug-resistant isolates.
    Matched MeSH terms: Fungal Proteins/genetics*
  6. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
    Matched MeSH terms: Fungal Proteins/genetics
  7. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
    Matched MeSH terms: Fungal Proteins/genetics
  8. Sundaram A, Grant CM
    Fungal Genet. Biol., 2014 Jun;67:15-23.
    PMID: 24699161 DOI: 10.1016/j.fgb.2014.03.005
    Eukaryotic cells typically respond to stress conditions by inhibiting global protein synthesis. The initiation phase is the main target of regulation and represents a key control point for eukaryotic gene expression. In Saccharomyces cerevisiae and mammalian cells this is achieved by phosphorylation of eukaryotic initiation factor 2 (eIF2α). We have examined how the fungal pathogen Candida albicans responds to oxidative stress conditions and show that oxidants including hydrogen peroxide, the heavy metal cadmium and the thiol oxidant diamide inhibit translation initiation. The inhibition in response to hydrogen peroxide and cadmium largely depends on phosphorylation of eIF2α since minimal inhibition is observed in a gcn2 mutant. In contrast, translation initiation is inhibited in a Gcn2-independent manner in response to diamide. Our data indicate that all three oxidants inhibit growth of C. albicans in a dose-dependent manner, however, loss of GCN2 does not improve growth in the presence of hydrogen peroxide or cadmium. Examination of translational activity indicates that these oxidants inhibit translation at a post-initiation phase which may account for the growth inhibition in a gcn2 mutant. As well as inhibiting global translation initiation, phosphorylation of eIF2α also enhances expression of the GCN4 mRNA in yeast via a well-known translational control mechanism. We show that C. albicans GCN4 is similarly induced in response to oxidative stress conditions and Gcn4 is specifically required for hydrogen peroxide tolerance. Thus, the response of C. albicans to oxidative stress is mediated by oxidant-specific regulation of translation initiation and we discuss our findings in comparison to other eukaryotes including the yeast S. cerevisiae.
    Matched MeSH terms: Fungal Proteins/genetics
  9. Seelan JS, Justo A, Nagy LG, Grand EA, Redhead SA, Hibbett D
    Mycologia, 2015 May-Jun;107(3):460-74.
    PMID: 25661717 DOI: 10.3852/14-084
    The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. Single-gene phylogenies and phylogenies combining ITS and 28S with RPB1 and RPB2 genes all support existence of a Lentinus/Polyporellus clade and a separate Neofavolus clade. Polyporellus (represented by P. arcularius, P. ciliatus, P. brumalis) forms a clade with species representing Lentinus subg. Lentinus sensu Pegler (1983), excluding L. suavissimus. Lentinus tigrinus appears as the sister group of Polyporellus in the four-gene phylogeny, but this placement was weakly supported. All three multigene analyses and the single-gene analysis using ITS strongly supported Polyporus tricholoma as the sister group of the Lentinus/Polyporellus clade; only the 28S rRNA phylogeny failed to support this placement. Under parsimony the ancestral hymenophoral configuration for the Lentinus/Polyporellus clade is estimated to be circular pores, with independent transitions to angular pores and lamellae. The ancestral state for the Neofavolus clade is estimated to be angular pores, with a single transition to lamellae in L. suavissimus. We propose that Lentinus suavissimus (section Pleuroti) should be reclassified as Neofavolus suavissimus comb. nov.
    Matched MeSH terms: Fungal Proteins/genetics
  10. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Fungal Proteins/genetics
  11. Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, et al.
    J Mol Model, 2013 Aug;19(8):3369-83.
    PMID: 23686283 DOI: 10.1007/s00894-013-1861-5
    A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
    Matched MeSH terms: Fungal Proteins/genetics
  12. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM
    Microb Cell Fact, 2011;10:94.
    PMID: 22050784 DOI: 10.1186/1475-2859-10-94
    Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
    Matched MeSH terms: Fungal Proteins/genetics*
  13. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
    Matched MeSH terms: Fungal Proteins/genetics*
  14. Kurtzman CP
    Int J Syst Evol Microbiol, 2007 May;57(Pt 5):1154-1162.
    PMID: 17473275 DOI: 10.1099/ijs.0.64847-0
    The genus Blastobotrys, which now includes species previously assigned to the synonymous genera Arxula and Sympodiomyces, represents the anamorph of the ascosporogenous genus Trichomonascus. Six novel species are proposed for assignment to Blastobotrys. They were detected from their unique nucleotide sequences in large-subunit rDNA, ITS1-5.8S-ITS2 rDNA, mitochondrial small-subunit rDNA and the cytochrome oxidase II gene. The proposed novel species are Blastobotrys americana sp. nov. (type strain NRRL Y-6844(T)=CBS 10337(T); substrate unknown; Kansas, USA), Blastobotrys illinoisensis sp. nov. (type strain NRRL YB-1343(T)=CBS 10339(T); from forest debris; Illinois, USA), Blastobotrys malaysiensis sp. nov. (type strain NRRL Y-6417(T)=CBS 10336(T); from soil; Malaysia), Blastobotrys muscicola sp. nov. (type strain NRRL Y-7993(T)=CBS 10338(T); from moss; Louisiana, USA), Blastobotrys peoriensis sp. nov. (type strain NRRL YB-2290(T)=CBS 10340(T); from a fungus; Peoria, IL, USA) and Blastobotrys raffinosifermentans sp. nov. (type strain NRRL Y-27150(T)=CBS 6800(T); substrate unknown).
    Matched MeSH terms: Fungal Proteins/genetics
  15. Li L, Mohd MH, Mohamed Nor NMI, Subramaniam S, Latiffah Z
    J Appl Microbiol, 2021 Apr;130(4):1273-1284.
    PMID: 32813902 DOI: 10.1111/jam.14828
    AIMS: To identify Botryosphaeriaceae fungal species that are associated with stem-end rot of mango, and to study their pathogenicity on mango fruit.

    METHODS AND RESULTS: Based on the sequences of internal transcribed spacer (ITS), TEF1-α and β-tubulin, as well as on the phylogenetic analysis of combined sequences, four species of Lasiodiplodia (L. theobromae,L. pseudotheobromae, L. iranensis, L. mahajangana) and two species of Neofusicoccum (N. ribis, N. parvum) were identified. Pseudofusicoccum violaceum, Neoscytalidium dimidiatum and three species of Botryosphaeria (B. scharifii, B. dothidea, B. ramosa) were identified based on sequences of ITS and TEF1-α. Pathogenicity test of selected isolates were tested on Chok Anan, Waterlily and Falan mango cultivars. Generally, all species were observed to be pathogenic on the three tested mango cultivars on wounded fruits, except for N. ribis and N. parvum, which were pathogenic on both wounded and unwounded fruits. However, N. ribis was only pathogenic on cultivar Falan, whereas B. ramosa were pathogenic on cultivars Waterlily and Falan.

    CONCLUSIONS: Eleven species of Botryosphaeriaceae were associated with mango stem-end rot in Malaysia. To the best of our knowledge, four species, namely L. mahajangana, B. ramosa, N. ribis and P. violaceum are the first recorded Botryosphaeriaceae fungi associated with stem end rot of mango.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of Botryosphaeriaceae fungi is important to establish suitable control measures and quarantine requirements. Many species have a wide host range, which means that there is a possibility of cross infection from other infected plants.

    Matched MeSH terms: Fungal Proteins/genetics
  16. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, et al.
    Sci Rep, 2016 07 27;6:30010.
    PMID: 27460640 DOI: 10.1038/srep30010
    Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54-64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of -3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.
    Matched MeSH terms: Fungal Proteins/genetics
  17. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Fungal Proteins/genetics
  18. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Fungal Proteins/genetics
  19. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Fungal Proteins/genetics
  20. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Fungal Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links