Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Chung WY, Zhu Y, Mahamad Maifiah MH, Shivashekaregowda NKH, Wong EH, Abdul Rahim N
    J Antibiot (Tokyo), 2021 02;74(2):95-104.
    PMID: 32901119 DOI: 10.1038/s41429-020-00366-2
    Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  2. Ng BW, Ong KC, Ahmad-Azraf A, Abdul-Muttalib AW
    Med J Malaysia, 2019 12;74(6):543-544.
    PMID: 31929484
    Necrotising fasciitis is a life-threatening infection of the soft tissue which can be caused by different microorganisms, but infection caused by Aeromonas spp. or Vibrio spp. is frequently associated with higher mortality rate. Necrotising fasciitis progresses rapidly and often need aggressive surgical intervention. We present a rare case of necrotising fasciitis cause by Aeromonas sobria which mortality was successfully prevented by swift diagnosis and aggressive surgery.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  3. Odeyemi OA, Ahmad A
    Microb Pathog, 2017 Feb;103:178-185.
    PMID: 28062284 DOI: 10.1016/j.micpath.2017.01.007
    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  4. Mohamad N, Mustafa M, Amal MNA, Saad MZ, Md Yasin IS, Al-Saari N
    J Aquat Anim Health, 2019 06;31(2):154-167.
    PMID: 30653742 DOI: 10.1002/aah.10062
    This study investigated the environmental factors associated with the presence of Vibrionaceae in economically important cage-cultured tropical marine fishes: the Asian Seabass Lates calcarifer, snapper Lutjanus sp., and hybrid grouper Epinephelus sp. Fish sampling was conducted at monthly intervals between December 2016 and August 2017. The body weight and length of individual fish were measured, and the skin, eye, liver, and kidney were sampled for bacterial isolation and identification. Water physicochemical parameters during the sampling activities were determined, and the enumeration of total Vibrionaceae count was also conducted from water and sediment samples. Nine species of Vibrio were identified, including V. alginolyticus, V. diabolicus, V. harveyi, V. campbellii, V. parahaemolyticus, V. rotiferianus, V. furnissii, V. fluvialis, and V. vulnificus. Photobacterium damselae subsp. damselae was also identified. A total of 73% of the isolated Vibrio belonged to the Harveyi clade, followed by the Vulnificus clade (5.5%) and Cholera clade (0.6%). Highest occurrence of Vibrio spp. and P. damselae subsp. damselae was found in hybrid grouper (72%), followed by Asian Seabass (48%) and snapper (36%). The associations of Vibrio spp. and P. damselae subsp. damselae with the host fish were not species specific. However, fish mortality and fish size showed strong associations with the presence of some Vibrio spp. On average, 60% of the infected cultured fish exhibited at least one clinical sign. Nevertheless, inconsistent associations were observed between the pathogens and water quality. The yearlong occurrence and abundance of Vibrionaceae in the environmental components indicate that they might serve as reservoirs of these pathogens.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  5. Ariffin H, Navaratnam P, Kee TK, Balan G
    J Trop Pediatr, 2004 Feb;50(1):26-31.
    PMID: 14984166
    The pattern of antibiotic resistance amongst gram-negative bacteria (GNB) in paediatric units, which have heavy empirical usage of broad-spectrum antibiotics, was studied prospectively over a 6-month period. A total of 200 consecutive, non-duplicate gram-negative isolates were obtained from 109 patients admitted to intensive care and oncology units in two hospitals. The commonest isolates were Klebsiella spp (36.5 per cent) and Pseudomonas (20.0 per cent). The isolates showed lower susceptibility rates to the third-generation cephalosporins (47-62 per cent) compared with cefepime (91 per cent), imipenem (90 per cent) and ciprofloxacin (99 per cent). Fifty-four (52.8 per cent) Klebsiella and Escherichia coli isolates were determined to be extended-spectrum beta-lactamase (ESBL) producing strains. Antibiotics found to be effective against ESBL-producers were imipenem and ciprofloxacin. The high resistance rate amongst GNB to third-generation cephalosporins is a likely consequence of heavy empirical usage of this group of antibiotics. The carbapenems and quinolones remain useful agents in the management of patients admitted to these units.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  6. Vadivelu J, Puthucheary SD, Phipps M, Chee YW
    J Med Microbiol, 1995 Mar;42(3):171-4.
    PMID: 7884797
    Eighteen strains of Aeromonas hydrophila from patients with bacteraemia were investigated for possible virulence factors. Cytotoxin and haemolysin were produced by all strains, whereas cholera toxin-like factor was produced by 33% of strains only. Enterotoxin production was not detected. Haemagglutination of guinea-pig, fowl and rabbit erythrocytes was demonstrated by 83%, 67% and 61% of strains, respectively. Fucose- and mannose-sensitive haemagglutinins were predominant. None of the strains agglutinated sheep erythrocytes. Extrachromosomal DNA was detected in 17 strains, 16 of which had a plasmid (3.6-5.1 MDa), the majority being between 4.6 and 5.1 MDa.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  7. Puthucheary SD, Puah SM, Chua KH
    PLoS One, 2012;7(2):e30205.
    PMID: 22383958 DOI: 10.1371/journal.pone.0030205
    BACKGROUND: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity.

    METHODOLOGY/PRINCIPAL FINDINGS: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%).

    CONCLUSIONS/SIGNIFICANCE: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 94 Aeromonas isolates in accordance with results of other recent studies. Aeromonas aquariorum showed to be the most prevalent species (50%) containing an important subset of virulence genes lip/alt/ser/fla/aer. Different combinations of the virulence genes present in the isolates indicate their probable role in the pathogenesis of Aeromonas infections.

    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  8. Chan KG, Puthucheary SD, Chan XY, Yin WF, Wong CS, Too WS, et al.
    Curr Microbiol, 2011 Jan;62(1):167-72.
    PMID: 20544198 DOI: 10.1007/s00284-010-9689-z
    Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C(6). Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  9. Puah SM, Puthucheary SD, Chua KH
    Jpn J Infect Dis, 2019 Jul 24;72(4):266-269.
    PMID: 30918144 DOI: 10.7883/yoken.JJID.2018.031
    There is an alarming increase in the prevalence of extended-spectrum β-lactamases (ESBLs) present mainly in Enterobacteriaceae and other nonfermenting gram-negative bacteria, such as Alcaligenes faecalis, which is the only species in that genus that is clinically relevant. We investigated Alcaligenes species from 7 cases (6 inpatients and one outpatient) at our tertiary-care hospital. Four patients had urinary tract infections, and one each had systemic lupus erythematosus, pulmonary stenosis, and diabetic ulcer. All 7 isolates were identified as Alcaligenes spp. based on their 16S rRNA gene sequences, and antibiotic susceptibility was determined using a Vitek 2 system with AST-GN87 cards. All the strains were resistant to cefazolin; 6 were resistant to trimethoprim/sulfamethoxazole; 5 manifested resistance to ampicillin/sulbactam, cefepime, tobramycin, ciprofloxacin, and nitrofurantoin; whereas 5 had multidrug resistance profiles. All the strains (7/7) expressed ESBL activity; PCR screening and sequencing showed evidence of genes blaTEM-116 (7/7) and blaOXA-10 (4/7), and we believe that this is the first report on the presence of TEM-116 and OXA-10 in an Alcaligenes spp. A combination of the 2 genes was present in 4 strains. All 7 strains were found to harbor at least one ESBL gene probably contributing to the drug resistance.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  10. Puah SM, Puthucheary SD, Liew FY, Chua KH
    Int J Antimicrob Agents, 2013 Mar;41(3):281-4.
    PMID: 23312608 DOI: 10.1016/j.ijantimicag.2012.11.012
    The objective of this study was to investigate the antimicrobial resistance patterns of 47 clinical isolates of Aeromonas aquariorum and to identify the presence of plasmids and the relevant antibiotic resistance genes (ARGs). Antibiotic susceptibilities were determined by the standard disc diffusion method. The presence of plasmids and ARGs was detected by gel electrophoresis and monoplex PCR. Resistance to amoxicillin/clavulanic acid (98%), amoxicillin (91%), gentamicin (13%), trimethoprim/sulfamethoxazole (11%) and kanamycin (6%) was observed, whilst no ciprofloxacin- or amikacin-resistant strains were detected. All isolates harboured plasmids with sizes ranging from ca. 2 kb to 10 kb. PCR revealed that A. aquariorum carried three β-lactam resistance genes (bla(TEM), bla(MOX) and bla(PSE)) and two sulphonamide resistance genes (sul1 and sul2). This study provides further understanding of the phenotypic and genotypic characteristics of multiresistant A. aquariorum clinical isolates.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  11. Lau TTV, Tan JMA, Puthucheary SD, Puah SM, Chua KH
    Braz J Microbiol, 2020 Sep;51(3):909-918.
    PMID: 32067209 DOI: 10.1007/s42770-020-00239-8
    Aeromonas dhakensis is an emergent human pathogen with medical importance. This study was aimed to determine the sequence types (STs), genetic diversity, and phylogenetic relationships of different clinical sources of 47 A. dhakensis from Malaysia using multilocus sequence typing (MLST), goeBURST, and phylogenetic analyses. The analysis of a concatenated six-gene tree with a nucleotide length of 2994 bp based on six housekeeping genes (gyrB, groL, gltA, metG, ppsA, and recA) and independent analyses of single gene fragments was performed. MLST was able to group 47 A. dhakensis from our collection into 36 STs in which 34 STs are novel STs. The most abundant ST521 consisted of five strains from peritoneal fluid and two strains from stools. Comparison of 62 global A. dhakensis was carried out via goeBURST; 94.4% (34/36) of the identified STs are novel and unique in Malaysia. Two STs (111 and 541) were grouped into clonal complexes among our strains and 32 STs occurred as singletons. Single-gene phylogenetic trees showed varying topologies; groL and rpoD grouped all A. dhakensis into a tight-cluster with bootstrap values of 100% and 99%, respectively. A poor phylogenetic resolution encountered in single-gene analyses was buffered by the multilocus phylogenetic tree that offered high discriminatory power (bootstrap value = 100%) in resolving all A. dhakensis from A. hydrophila and delineating the relationship among other taxa. Genetic diversity analysis showed groL as the most conserved gene and ppsA as the most variable gene. This study revealed novel STs and high genetic diversity among clinical A. dhakensis from Malaysia.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  12. Lau TV, Puah SM, Tan JMA, Puthucheary SD, Chua KH
    Braz J Microbiol, 2021 Jun;52(2):517-529.
    PMID: 33768508 DOI: 10.1007/s42770-021-00457-8
    Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  13. Khor WC, Puah SM, Koh TH, Tan JAMA, Puthucheary SD, Chua KH
    Microb Drug Resist, 2018 May;24(4):469-478.
    PMID: 29461928 DOI: 10.1089/mdr.2017.0083
    OBJECTIVE: The objective of this study was to examine the species distribution, genetic relatedness, virulence gene profiles, antimicrobial sensitivities, and resistance gene distribution of clinical Aeromonas strains from Singapore and Malaysia.

    METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.

    RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.

    CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.

    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  14. McNeil HC, Lean SS, Lim V, Clarke SC
    Int J Antimicrob Agents, 2016 Nov;48(5):578-579.
    PMID: 27742200 DOI: 10.1016/j.ijantimicag.2016.08.011
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  15. Sheikhlar A, Alimon AR, Daud H, Saad CR, Webster CD, Meng GY, et al.
    ScientificWorldJournal, 2014;2014:592709.
    PMID: 25574488 DOI: 10.1155/2014/592709
    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  16. Shueh CS, Neela V, Hussin S, Hamat RA
    J Microbiol Methods, 2013 Aug;94(2):141-143.
    PMID: 23756145 DOI: 10.1016/j.mimet.2013.06.001
    We developed a time-saving and cost-efficient Pulsed Field Gel Electrophoresis (PFGE) method for the typing of Stenotrophomonas maltophilia by modifying the conventional procedures. Our modifications related to the cell suspension preparation, lysis of bacterial cells in plugs, washing steps, and consumption of restriction enzyme. Although few rapid PFGE protocols on Gram-negative bacteria are available, the use of comparatively large amounts of costly reagents prompted us to look for other alternative. Hence, by considering the speed, simplicity, and relatively low cost, the modified protocol may be of more practical value than other established protocols in investigating S. maltophilia nosocomial outbreaks.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  17. Amin MM, Phillips ND, La T, Robertson ID, Hampson DJ
    Avian Pathol, 2014;43(6):501-5.
    PMID: 25246135 DOI: 10.1080/03079457.2014.966056
    Avian intestinal spirochaetosis causes problems including delayed onset of lay and wet litter in adult chickens, and results from colonization of the caecae/rectum with pathogenic intestinal spirochaetes (genus Brachyspira). Because avian intestinal spirochaetosis has not previously been studied in South East Asia, this investigation was undertaken in Malaysia. Faecal samples were collected from 25 farms and a questionnaire was administered. Brachyspira species were detected by polymerase chain reaction in 198 of 500 (39%) faecal samples from 20 (80%) farms, including 16 (94%) layer and four (50%) breeder farms. Pathogenic Brachyspira pilosicoli was identified in five (29%) layer and two (25%) breeder farms whilst pathogenic Brachyspira intermedia was detected in nine (53%) layer and one (12.5%) of the breeder farms. Twelve (80%) layer farms had egg production problems and 11 (92%) were positive for Brachyspira: three (25%) for B. pilosicoli and six (50%) for B. intermedia. Of three breeder farms with egg production problems, one was colonized with B. pilosicoli. Three of ten layer farms with wet litter were positive for B. pilosicoli and six for B. intermedia. Of four breeder farms with wet litter, one was colonized with B. pilosicoli and one with B. intermedia. No significant associations were found between colonization and reduced egg production or wet litter, perhaps because so many flocks were colonized. A significant association (P = 0.041) occurred between a high prevalence of colonization and faecal staining of eggs. There were significant positive associations between open-sided housing (P = 0.006), and flocks aged >40 weeks (P < 0.001) and colonization by pathogenic species.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  18. Salasawati H, Ramelah M, Pitt TL, Holmes B
    PMID: 10772579
    The purpose of this investigation was to evaluate the usefulness of a co-agglutination procedure for the typing of Flavobacterium meningosepticum. The sensitivity and specificity of the co-agglutination test was compared to the slide agglutination test using reference strains of the bacterial species. Antisera were characterized by both technics to determine their titer and working dilution. The specificity of the sera was assessed by performing tests which include strains of other species and serotypes. A collection of 47 strains of F. meningosepticum isolated from clinical specimens were typed by both co-agglutination and slide agglutination methods. Co-agglutination proved to be markedly more specific than the slide procedure although both methods were similar in sensitivity. It was concluded that co-agglutination proved to be an excellent method for the serotyping of F. meningosepticum.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
  19. Chang YT, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, et al.
    Int J Antimicrob Agents, 2017 Jun;49(6):734-739.
    PMID: 28435019 DOI: 10.1016/j.ijantimicag.2017.01.030
    This study was conducted to investigate the epidemiology and antimicrobial susceptibility patterns of Gram-negative bacilli (GNB) isolated from intra-abdominal infections (IAIs) in the Asia-Pacific region (APR) from 2010-2013. A total of 17 350 isolates were collected from 54 centres in 13 countries in the APR. The three most commonly isolated GNB were Escherichia coli (46.1%), Klebsiella pneumoniae (19.3%) and Pseudomonas aeruginosa (9.8%). Overall, the rates of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae were 38.2% and 24.3%, respectively, and they were highest in China (66.6% and 38.7%, respectively), Thailand (49.8% and 36.5%, respectively) and Vietnam (47.9% and 30.4%, respectively). During 2010-2013, the rates of ESBL-producing E. coli and K. pneumoniae isolates causing community-associated (CA) IAIs (collected <48 h after admission) were 26.0% and 13.5%, respectively, and those causing hospital-associated (HA) IAIs were 48.0% and 30.6%, respectively. Amikacin, ertapenem and imipenem were the most effective agents against ESBL-producing isolates. Piperacillin/tazobactam displayed good in vitro activity (91.4%) against CA ESBL-producing E. coli. For other commonly isolated Enterobacteriaceae, fluoroquinolones, cefepime and carbapenems exhibited better in vitro activities than third-generation cephalosporins. Amikacin possessed high in vitro activity against all GNB isolates (>80%) causing IAIs, except for Acinetobacter calcoaceticus-baumannii (ACB) complex (30.9% for HA-IAI isolates). All of the antimicrobial agents tested exhibited <45% in vitro activity against ACB complex. Antimicrobial resistance is a persistent threat in the APR and continuous monitoring of evolutionary trends in the susceptibility patterns of GNB causing IAIs in this region is mandatory.
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology*
  20. Monir MS, Yusoff MSM, Zulperi ZM, Hassim HA, Zamri-Saad M, Amal MNA, et al.
    Fish Shellfish Immunol, 2021 Jun;113:162-175.
    PMID: 33857622 DOI: 10.1016/j.fsi.2021.04.006
    Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P 
    Matched MeSH terms: Gram-Negative Bacterial Infections/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links