Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Khalaj-Hedayati A, Chua CLL, Smooker P, Lee KW
    Influenza Other Respir Viruses, 2020 Jan;14(1):92-101.
    PMID: 31774251 DOI: 10.1111/irv.12697
    The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
    Matched MeSH terms: Influenza Vaccines/immunology*
  2. Bukhsh A, Hussain S, Rehman IU, Mallhi TH, Khan YH, Khaliel AM, et al.
    Pak J Pharm Sci, 2019 Jul;32(4(Supplementary)):1789-1796.
    PMID: 31680074
    Seasonal influenza is a highly contagious viral respiratory disorder. Prior knowledge of flu among general community is of paramount importance in order to mitigate its growing burden. In a pandemic, young adults are more likely to be infected increasing the potential for universities to be explosive disease outbreak centers. In this context, current study aims to assess the knowledge and perception of flu among university students from health sciences (HS) and non-HS background. Questionnaire-based cross sectional (August-December 2015) study was conducted among students of 65 universities across Pakistan. The students willing to participate were requested to fill out the self-administered questionnaire and responses were recorded and descriptively analyzed by SPSS. A total of 1694 students (age: 21.12 ± 2.13 years), 95% which belonged to age group 18-25 years, participated in the current study. Most of the participants (91.7%) had suffered from influenza during their life but only 55.7% correctly answered virus as causative agent of flu, while majority of participants, primarily from non-HS disciplines were not aware of flu cause. Very few participants (8.1%) believed that flu can cause death. About 20% students, mainly from non-HS disciplines reported that antibiotic can kill viruses. Similarly, 47.1% respondents agreed on the effectiveness of antibiotic in flu. A large proportion of study population preferred self-medication for influenza. Only 20.1% students were aware of influenza vaccine while majority of students (79.9%) from both disciplines reported that there is no such vaccine. Awareness and health literacy regarding seasonal influenza is poor among university students, especially from non-HS disciplines. These findings necessitate dire need to appropriately structured awareness programs in educational institutes to curb the growing burden of influenza.
    Matched MeSH terms: Influenza Vaccines/immunology
  3. Bukhsh A, Rehman H, Mallhi TH, Ata H, Rehman IU, Lee LH, et al.
    Hum Vaccin Immunother, 2018 04 03;14(4):952-957.
    PMID: 29333939 DOI: 10.1080/21645515.2017.1415686
    National immunization program of Pakistan does not include Influenza vaccines. The low rate of immunization might be attributed to the poor knowledge of influenza vaccination in Pakistan. Current study was aimed to assess the knowledge and attitude of influenza vaccination among parents. A questionnaire-based cross sectional study was conducted among randomly selected parents with at least one child aged >6 months. The responses were recorded against 27 items questionnaire assessing knowledge, perception, attitude and behaviours of parents. Data were analysed by using appropriate statistical methods. A total 532 responses were recorded with male gender preponderance (65%). Most of the parents (61.1%) reported that their children had received or planned to receive all recommended vaccines in Expanded Program on Immunization (EPI) of Pakistan. Only one third of the parents (24.4%) were aware of the availability of influenza vaccines in Pakistan, and very few (6.6%) reported vaccinating their child against influenza. Exploring the parents' attitudes regarding children vaccination, the top motivator was 'immunization is important to keep my children healthy' (relative index = 0.93, p < 0.000). However, substantial number of parents believed that influenza is not a serious disease (18.5%) and vaccines are accompanied by several side effects (24.6%). A positive attitude was reflected among parents who were aware of influenza vaccines in Pakistan. About 35% participants believed that influenza vaccines are not required for healthy children. Current study demonstrated very low vaccination rate against influenza. Awareness and health literacy regarding influenza vaccine is poor among parents. These findings necessitate the need to appropriately structured awareness programs regarding influenza vaccination among parents.
    Matched MeSH terms: Influenza Vaccines/immunology*
  4. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Influenza Vaccines/immunology*
  5. Jee PF, Tiong V, Shu MH, Khoo JJ, Wong WF, Abdul Rahim R, et al.
    PLoS One, 2017;12(11):e0187718.
    PMID: 29108012 DOI: 10.1371/journal.pone.0187718
    Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
    Matched MeSH terms: Influenza Vaccines/immunology
  6. Tsuru T, Terao K, Murakami M, Matsutani T, Suzaki M, Amamoto T, et al.
    Mod Rheumatol, 2014 May;24(3):511-6.
    PMID: 24252023 DOI: 10.3109/14397595.2013.843743
    To evaluate humoral immune response to influenza vaccine and polysaccharide pneumococcal vaccine in patients with rheumatoid arthritis (RA) or Castleman's disease (CD) during tocilizumab therapy.
    Matched MeSH terms: Influenza Vaccines/immunology*
  7. Horm SV, Mardy S, Rith S, Ly S, Heng S, Vong S, et al.
    PLoS One, 2014;9(10):e110713.
    PMID: 25340711 DOI: 10.1371/journal.pone.0110713
    BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011.

    METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade.

    CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.

    Matched MeSH terms: Influenza Vaccines/immunology
  8. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Influenza Vaccines/immunology
  9. Beran J, Peeters M, Dewé W, Raupachová J, Hobzová L, Devaster JM
    BMC Infect Dis, 2013;13:224.
    PMID: 23688546 DOI: 10.1186/1471-2334-13-224
    Two phylogenetic lineages of influenza B virus coexist and circulate in the human population (B/Yamagata and B/Victoria) but only one B-strain is included in each seasonal vaccine. Mismatch regularly occurs between the recommended and circulating B-strain. Inclusion of both lineages in vaccines may offer better protection against influenza.
    Matched MeSH terms: Influenza Vaccines/immunology*
  10. Jazayeri SD, Ideris A, Zakaria Z, Yeap SK, Omar AR
    Comp Immunol Microbiol Infect Dis, 2012 Sep;35(5):417-27.
    PMID: 22512819 DOI: 10.1016/j.cimid.2012.03.007
    This study evaluates the immune responses of single avian influenza virus (AIV) HA DNA vaccine immunization using attenuated Salmonella enterica sv. Typhimurium as an oral vaccine carrier and intramuscular (IM) DNA injection. One-day-old specific-pathogen-free (SPF) chicks immunized once by oral gavage with 10(9) Salmonella colony-forming units containing plasmid expression vector encoding the HA gene of A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1.H5) did not show any clinical manifestations. Serum hemagglutination inhibition (HI) titer samples collected from the IM immunized chickens were low compared to those immunized with S. typhimurium.pcDNA3.1.H5. The highest average antibody titers were detected on day 35 post immunization for both IM and S. typhimurium.pcDNA3.1.H5 immunized groups, at 4.0±2.8 and 51.2±7.5, respectively. S. typhimurium.pcDNA3.1.H5 also elicited both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMCs) of immunized chickens as early as day 14 after immunization, at 20.5±2.0 and 22.9±1.9%, respectively. Meanwhile, the CD4(+) and CD8(+) T cells in chickens vaccinated intramuscularly were low at 5.9±0.9 and 8.5±1.3%, respectively. Immunization of chickens with S. typhimurium.pcDNA3.1.H5 enhanced IL-1β, IL-12β, IL-15 and IL-18 expressions in spleen although no significant differences were recorded in chickens vaccinated via IM and orally with S. typhimurium and S. typhimurium.pcDNA3.1. Hence, single oral administrations of the attenuated S. typhimurium containing pcDNA3.1.H5 showed antibody, T cell and Th1-like cytokine responses against AIV in chickens. Whether the T cell response induced by vaccination is virus-specific and whether vaccination protects against AIV infection requires further study.
    Matched MeSH terms: Influenza Vaccines/immunology*
  11. Jazayeri SD, Ideris A, Zakaria Z, Shameli K, Moeini H, Omar AR
    J Control Release, 2012 Jul 10;161(1):116-23.
    PMID: 22549012 DOI: 10.1016/j.jconrel.2012.04.015
    DNA formulations provide the basis for safe and cost effective vaccine. Low efficiency is often observed in the delivery of DNA vaccines. In order to assess a new strategy for oral DNA vaccine formulation and delivery, plasmid encoding hemagglutinin (HA) gene of avian influenza virus, A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5) was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). AgNP were successfully synthesized uniformly dispersed with size in the range of 4 to 18 nm with an average size of 11 nm. Cytotoxicity of the prepared AgNP was investigated in vitro and in vivo using MCF-7 cells and cytokine expression, respectively. At the concentration of -5 log₁₀AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5% cell death compared to the control. One-day-old specific pathogen-free (SPF) chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (200 ng/ml) nanoencapsulated with 40 μl AgNP (3.7×10⁻² μg of Ag) showed no clinical manifestations. PCR successfully detect the AgNP/H5 plasmid from the duodenum of the inoculated chicken as early as 1h post-immunization. Immunization of chickens with AgNP/H5 enhanced both pro inflammatory and Th1-like expressions, although no significant differences were recorded in the chickens inoculated with AgNP, AgNP/pcDNA3.1 and the control. In addition, serum samples collected from immunized chickens with AgNP/H5 showed rapidly increasing antibody against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 post-immunization at 51.2±7.5. AgNP/H5 also elicited both CD4+ and CD8+ T cells in the immunized chickens as early as day 14 after immunization, at 7.5±2.0 and 20±1.9 percentage, respectively. Hence, single oral administrations of AgNP/H5 led to induce both the antibody and cell-mediated immune responses as well as enhanced cytokine production.
    Matched MeSH terms: Influenza Vaccines/immunology
  12. Lim KL, Jazayeri SD, Yeap SK, Alitheen NB, Bejo MH, Ideris A, et al.
    BMC Vet Res, 2012;8:132.
    PMID: 22866758 DOI: 10.1186/1746-6148-8-132
    DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine.
    Matched MeSH terms: Influenza Vaccines/immunology
  13. Bosch M, Méndez M, Pérez M, Farran A, Fuentes MC, Cuñé J
    Nutr Hosp, 2012 Mar-Apr;27(2):504-9.
    PMID: 22732975 DOI: 10.1590/S0212-16112012000200023
    The effectiveness of influenza vaccination in preventing illness is lower in the elderly; this is why the ability of Lactobacillus plantarum CECT 7315/7316 to stimulate the response to influenza vaccination in elderly was evaluated.
    Matched MeSH terms: Influenza Vaccines/immunology*
  14. Gupta V, Dawood FS, Muangchana C, Lan PT, Xeuatvongsa A, Sovann L, et al.
    PLoS One, 2012;7(12):e52842.
    PMID: 23285200 DOI: 10.1371/journal.pone.0052842
    Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.
    Matched MeSH terms: Influenza Vaccines/immunology
  15. Wong LP, Sam IC
    Int J Behav Med, 2011 Jun;18(2):112-21.
    PMID: 20835855 DOI: 10.1007/s12529-010-9114-9
    BACKGROUND: Assessment of general public's knowledge and attitudes toward the development and prevention of new disease outbreaks is imperative because they have profound effects on health behaviors and may contribute to the control of the epidemic.
    PURPOSE: To investigate the level of knowledge and attitudes towards the influenza A(H1N1) outbreak across various ethnic groups and socio-demographic backgrounds in Malaysia.
    METHOD: A cross-sectional, population-based, computer-assisted telephone interview exploring knowledge and attitudes regarding influenza A(H1N1) was conducted in Malaysia. Between July 11 and September 12, 2009, a total of 1,050 respondents were interviewed (response rate 69.3%).
    RESULTS: The mean total knowledge score for the overall sample was 7.30 (SD ± 1.961) out of a possible score of 13 (Chinese had the highest scores, followed by Indians, then Malays). Some erroneous beliefs about the modes of transmission were identified. The majority of the participants (73.8%) perceived the A(H1N1) infection as often deadly. Despite the overestimation of the severity of A(H1N1) infection, high confidence in preventing infection and low perceived susceptibility of infection were reported. Influenza A(H1N1)-related stigma was prevalent and exhibited differences across ethnic groups.
    CONCLUSIONS: Findings suggest that provision of education and clear information are essential to correct the misconceptions, and increase perceived susceptibility to infection so that the general public will take precautions against A(H1N1) infection.
    Matched MeSH terms: Influenza Vaccines/immunology
  16. Hojsak I, Avitzur Y, Mor E, Shamir R, Haimi-Cohen Y, Zakay-Rones Z, et al.
    Pediatr Infect Dis J, 2011 Jun;30(6):491-4.
    PMID: 21248658 DOI: 10.1097/INF.0b013e31820b7c22
    Data on the immunogenicity of the influenza vaccine in children after liver transplantation are sparse. Our study aims to evaluate the response of such patients to the trivalent influenza vaccine, administered by different protocols in 2 influenza seasons.
    Matched MeSH terms: Influenza Vaccines/immunology*
  17. Baxter R, Patriarca PA, Ensor K, Izikson R, Goldenthal KL, Cox MM
    Vaccine, 2011 Mar 9;29(12):2272-8.
    PMID: 21277410 DOI: 10.1016/j.vaccine.2011.01.039
    Alternative methods for influenza vaccine production are needed to ensure adequate supplies.
    Matched MeSH terms: Influenza Vaccines/immunology*
  18. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Influenza Vaccines/immunology*
  19. Zhang J, Lei F
    Integr Zool, 2010 Sep;5(3):264-71.
    PMID: 21392344 DOI: 10.1111/j.1749-4877.2010.00212.x
    In the present study, we used nucleotide and protein sequences of avian influenza virus H5N1, which were obtained in Asia and Africa, analyzed HA proteins using ClustalX1.83 and MEGA4.0, and built a genetic evolutionary tree of HA nucleotides. The analysis revealed that the receptor specificity amino acid of A/HK/213/2003, A/Turkey/65596/2006 and etc mutated into QNG, which could bind with á-2, 3 galactose and á-2, 6 galactose. A mutation might thus take place and lead to an outbreak of human infections of avian influenza virus. The mutations of HA protein amino acids from 2004 to 2009 coincided with human infections provided by the World Health Organization, indicating a "low-high-highest-high-low" pattern. We also found out that virus strains in Asia are from different origins: strains from Southeast Asia and East Asia are of the same origin, whereas those from West Asia, South Asia and Africa descend from one ancestor. The composition of the phylogenetic tree and mutations of key site amino acids in HA proteins reflected the fact that the majority of strains are regional and long term, and virus diffusions exist between China, Laos, Malaysia, Indonesia, Azerbaijan, Turkey and Iraq. We would advise that pertinent vaccines be developed and due attention be paid to the spread of viruses between neighboring countries and the dangers of virus mutation and evolution.
    Matched MeSH terms: Influenza Vaccines/immunology
  20. Keynan Y, Card CM, Ball BT, Li Y, Plummer FA, Fowke KR
    Clin Microbiol Infect, 2010 Aug;16(8):1179-86.
    PMID: 20670292 DOI: 10.1111/j.1469-0691.2010.03142.x
    Influenza vaccine provides protection against infection with matched strains, and this protection correlates with serum antibody titres. In addition to antibodies, influenza-specific CD8+ T-lymphocyte responses are important in decreasing disease severity and facilitating viral clearance. Because this response is directed at internal, relatively conserved antigens, it affords some cross-protection within a given subtype of influenza virus. With the possibility of a broader A(H1N1) Mexico outbreak in the fall of 2009, it appeared worthwhile studying the degree of cellular immune response-mediated cross-reactivity among influenza virus isolates. The composition of the 2006-2007 influenza vaccine included the A/New Caledonia/20/1999 strain (comprising a virus that has been circulating, and was included in vaccine preparations, for 6-7 years) and two strains not previously included (Wisconsin and Malaysia). This combination afforded us the opportunity to determine the degree of cross-reactive cellular immunity after exposure to new viral strains. We analysed the antibody responses and the phenotype and function of the T cell response to vaccine components. The results obtained show that antibody responses to A/New-Caledonia were already high and vaccination did not increase antibody or cytotoxic T lymphocyte responses. These data suggest that repeated exposure to the same influenza stain results in limited boosting of humoral and cellular immune responses.
    Matched MeSH terms: Influenza Vaccines/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links