Displaying publications 1 - 20 of 267 in total

Abstract:
Sort:
  1. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Machine Learning
  2. Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, et al.
    J Hazard Mater, 2021 07 05;413:125426.
    PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426
    This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P 
    Matched MeSH terms: Machine Learning
  3. Edros R, Feng TW, Dong RH
    SAR QSAR Environ Res, 2023;34(6):475-500.
    PMID: 37409842 DOI: 10.1080/1062936X.2023.2230868
    Current in silico modelling techniques, such as molecular dynamics, typically focus on compounds with the highest concentration from chromatographic analyses for bioactivity screening. Consequently, they reduce the need for labour-intensive in vitro studies but limit the utilization of extensive chromatographic data and molecular diversity for compound classification. Compound permeability across the blood-brain barrier (BBB) is a key concern in central nervous system (CNS) drug development, and this limitation can be addressed by applying cheminformatics with codeless machine learning (ML). Among the four models developed in this study, the Random Forest (RF) algorithm with the most robust performance in both internal and external validation was selected for model construction, with an accuracy (ACC) of 87.5% and 86.9% and area under the curve (AUC) of 0.907 and 0.726, respectively. The RF model was deployed to classify 285 compounds detected using liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) in Kelulut honey; of which, 140 compounds were screened with 94 descriptors. Seventeen compounds were predicted to permeate the BBB, revealing their potential as drugs for treating neurodegenerative diseases. Our results highlight the importance of employing ML pattern recognition to identify compounds with neuroprotective potential from the entire pool of chromatographic data.
    Matched MeSH terms: Machine Learning
  4. Blaizot A, Veettil SK, Saidoung P, Moreno-Garcia CF, Wiratunga N, Aceves-Martins M, et al.
    Res Synth Methods, 2022 May;13(3):353-362.
    PMID: 35174972 DOI: 10.1002/jrsm.1553
    The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the reported benefits and challenges in using such methods. A search was conducted in 4 databases (Medline, Embase, CDSR, and Epistemonikos) up to April 2021 for systematic reviews and other related reviews implementing AI methods. To be included, the review must use any form of AI method, including machine learning, deep learning, neural network, or any other applications used to enable the full or semi-autonomous performance of one or more stages in the development of evidence synthesis. Twelve reviews were included, using nine different tools to implement 15 different AI methods. Eleven methods were used in the screening stages of the review (73%). The rest were divided: two in data extraction (13%) and two in risk of bias assessment (13%). The ambiguous benefits of the data extractions, combined with the reported advantages from 10 reviews, indicating that AI platforms have taken hold with varying success in evidence synthesis. However, the results are qualified by the reliance on the self-reporting of the review authors. Extensive human validation still appears required at this stage in implementing AI methods, though further evaluation is required to define the overall contribution of such platforms in enhancing efficiency and quality in evidence synthesis.
    Matched MeSH terms: Machine Learning
  5. Kumar, Yogan Jaya, Naomie Salim, Ahmed Hamza Osman, Abuobieda, Albaraa
    MyJurnal
    Cross-document Structure Theory (CST) has recently been proposed to facilitate tasks related to multidocument analysis. Classifying and identifying the CST relationships between sentences across topically related documents have since been proven as necessary. However, there have not been sufficient studies presented in literature to automatically identify these CST relationships. In this study, a supervised machine learning technique, i.e. Support Vector Machines (SVMs), was applied to identify four types of CST relationships, namely “Identity”, “Overlap”, “Subsumption”, and “Description” on the datasets obtained from CSTBank corpus. The performance of the SVMs classification was measured using Precision, Recall and F-measure. In addition, the results obtained using SVMs were also compared with those from the previous literature using boosting classification algorithm. It was found that SVMs yielded better results in classifying the four CST relationships.
    Matched MeSH terms: Supervised Machine Learning
  6. Liu H, Zhang X, Liu H, Chong ST
    Int J Public Health, 2023;68:1605322.
    PMID: 36798738 DOI: 10.3389/ijph.2023.1605322
    Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
    Matched MeSH terms: Machine Learning
  7. Vepa A, Saleem A, Rakhshan K, Daneshkhah A, Sedighi T, Shohaimi S, et al.
    PMID: 34207560 DOI: 10.3390/ijerph18126228
    BACKGROUND: Within the UK, COVID-19 has contributed towards over 103,000 deaths. Although multiple risk factors for COVID-19 have been identified, using this data to improve clinical care has proven challenging. The main aim of this study is to develop a reliable, multivariable predictive model for COVID-19 in-patient outcomes, thus enabling risk-stratification and earlier clinical decision-making.

    METHODS: Anonymised data consisting of 44 independent predictor variables from 355 adults diagnosed with COVID-19, at a UK hospital, was manually extracted from electronic patient records for retrospective, case-control analysis. Primary outcomes included inpatient mortality, required ventilatory support, and duration of inpatient treatment. Pulmonary embolism sequala was the only secondary outcome. After balancing data, key variables were feature selected for each outcome using random forests. Predictive models were then learned and constructed using Bayesian networks.

    RESULTS: The proposed probabilistic models were able to predict, using feature selected risk factors, the probability of the mentioned outcomes. Overall, our findings demonstrate reliable, multivariable, quantitative predictive models for four outcomes, which utilise readily available clinical information for COVID-19 adult inpatients. Further research is required to externally validate our models and demonstrate their utility as risk stratification and clinical decision-making tools.

    Matched MeSH terms: Machine Learning
  8. Loh SY, Jahans-Price T, Greenwood MP, Greenwood M, Hoe SZ, Konopacka A, et al.
    eNeuro, 2017 12 21;4(6).
    PMID: 29279858 DOI: 10.1523/ENEURO.0243-17.2017
    The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.
    Matched MeSH terms: Unsupervised Machine Learning*
  9. Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, et al.
    Bioresour Technol, 2023 Apr;374:128746.
    PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746
    The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3-0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
    Matched MeSH terms: Machine Learning
  10. Melisa Anak Adeh, Mohd Ibrahim Shapiai, Ayman Maliha, Muhammad Hafiz Md Zaini
    MyJurnal
    Nowadays, the applications of tracking moving object are commonly used in various
    areas especially in computer vision applications. There are many tracking algorithms
    have been introduced and they are divided into three groups which are generative
    trackers, discriminative trackers and hybrid trackers. One of the methods is TrackingLearning-Detection
    (TLD) framework which is an example of the hybrid trackers where
    combination between the generative trackers and the discriminative trackers occur. In
    TLD, the detector consists of three stages which are patch variance, ensemble classifier
    and KNearest Neighbor classifier. In the second stage, the ensemble classifier depends
    on simple pixel comparison hence, it is likely fail to offer a better generalization of the
    appearances of the target object in the detection process. In this paper, OnlineSequential
    Extreme Learning Machine (OS-ELM) was used to replace the ensemble
    classifier in the TLD framework. Besides that, different types of Haar-like features were
    used for the feature extraction process instead of using raw pixel value as the features.
    The objectives of this study are to improve the classifier in the second stage of detector
    in TLD framework by using Haar-like features as an input to the classifier and to get a
    more generalized detector in TLD framework by using OS-ELM based detector. The
    results showed that the proposed method performs better in Pedestrian 1 in terms of
    F-measure and also offers good performance in terms of Precision in four out of six
    videos.
    Matched MeSH terms: Machine Learning
  11. Hannan MA, Lipu MSH, Hussain A, Ker PJ, Mahlia TMI, Mansor M, et al.
    Sci Rep, 2020 Mar 13;10(1):4687.
    PMID: 32170100 DOI: 10.1038/s41598-020-61464-7
    State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions.
    Matched MeSH terms: Machine Learning
  12. Za'im NAN, Al-Dhief FT, Azman M, Alsemawi MRM, Abdul Latiff NMA, Mat Baki M
    J Otolaryngol Head Neck Surg, 2023 Sep 20;52(1):62.
    PMID: 37730624 DOI: 10.1186/s40463-023-00661-6
    BACKGROUND: A multidimensional voice quality assessment is recommended for all patients with dysphonia, which requires a patient visit to the otolaryngology clinic. The aim of this study was to determine the accuracy of an online artificial intelligence classifier, the Online Sequential Extreme Learning Machine (OSELM), in detecting voice pathology. In this study, a Malaysian Voice Pathology Database (MVPD), which is the first Malaysian voice database, was created and tested.

    METHODS: The study included 382 participants (252 normal voices and 130 dysphonic voices) in the proposed database MVPD. Complete data were obtained for both groups, including voice samples, laryngostroboscopy videos, and acoustic analysis. The diagnoses of patients with dysphonia were obtained. Each voice sample was anonymized using a code that was specific to each individual and stored in the MVPD. These voice samples were used to train and test the proposed OSELM algorithm. The performance of OSELM was evaluated and compared with other classifiers in terms of the accuracy, sensitivity, and specificity of detecting and differentiating dysphonic voices.

    RESULTS: The accuracy, sensitivity, and specificity of OSELM in detecting normal and dysphonic voices were 90%, 98%, and 73%, respectively. The classifier differentiated between structural and non-structural vocal fold pathology with accuracy, sensitivity, and specificity of 84%, 89%, and 88%, respectively, while it differentiated between malignant and benign lesions with an accuracy, sensitivity, and specificity of 92%, 100%, and 58%, respectively. Compared to other classifiers, OSELM showed superior accuracy and sensitivity in detecting dysphonic voices, differentiating structural versus non-structural vocal fold pathology, and between malignant and benign voice pathology.

    CONCLUSION: The OSELM algorithm exhibited the highest accuracy and sensitivity compared to other classifiers in detecting voice pathology, classifying between malignant and benign lesions, and differentiating between structural and non-structural vocal pathology. Hence, it is a promising artificial intelligence that supports an online application to be used as a screening tool to encourage people to seek medical consultation early for a definitive diagnosis of voice pathology.

    Matched MeSH terms: Machine Learning*
  13. Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK
    Cancer Lett, 2021 10 10;518:102-114.
    PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025
    This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
    Matched MeSH terms: Machine Learning
  14. Najah A, Teo FY, Chow MF, Huang YF, Latif SD, Abdullah S, et al.
    PMID: 33558809 DOI: 10.1007/s13762-021-03139-y
    Global concerns have been observed due to the outbreak and lockdown causal-based COVID-19, and hence, a global pandemic was announced by the World Health Organization (WHO) in January 2020. The Movement Control Order (MCO) in Malaysia acts to moderate the spread of COVID-19 through the enacted measures. Furthermore, massive industrial, agricultural activities and human encroachment were significantly reduced following the MCO guidelines. In this study, first, a reconnaissance survey was carried out on the effects of MCO on the health conditions of two urban rivers (i.e., Rivers of Klang and Penang) in Malaysia. Secondly, the effect of MCO lockdown on the water quality index (WQI) of a lake (Putrajaya Lake) in Malaysia is considered in this study. Finally, four machine learning algorithms have been investigated to predict WQI and the class in Putrajaya Lake. The main observations based on the analysis showed that noticeable enhancements of varying degrees in the WQI had occurred in the two investigated rivers. With regard to Putrajaya Lake, there is a significant increase in the WQI Class I, from 24% in February 2020 to 94% during the MCO month of March 2020. For WQI prediction, Multi-layer Perceptron (MLP) outperformed other models in predicting the changes in the index with a high level of accuracy. For sensitivity analysis results, it is shown that NH3-N and COD play vital rule and contributing significantly to predicting the class of WQI, followed by BOD, while the remaining three parameters (i.e. pH, DO, and TSS) exhibit a low level of importance.
    Matched MeSH terms: Machine Learning
  15. Nordin N, Zainol Z, Mohd Noor MH, Chan LF
    Artif Intell Med, 2022 10;132:102395.
    PMID: 36207078 DOI: 10.1016/j.artmed.2022.102395
    BACKGROUND: Early detection and prediction of suicidal behaviour are key factors in suicide control. In conjunction with recent advances in the field of artificial intelligence, there is increasing research into how machine learning can assist in the detection, prediction and treatment of suicidal behaviour. Therefore, this study aims to provide a comprehensive review of the literature exploring machine learning techniques in the study of suicidal behaviour prediction.

    METHODS: A search of four databases was conducted: Web of Science, PubMed, Dimensions, and Scopus for research papers dated between January 2016 and September 2021. The search keywords are 'data mining', 'machine learning' in combination with 'suicidal behaviour', 'suicide', 'suicide attempt', 'suicidal ideation', 'suicide plan' and 'self-harm'. The studies that used machine learning techniques were synthesized according to the countries of the articles, sample description, sample size, classification tasks, number of features used to develop the models, types of machine learning techniques, and evaluation of performance metrics.

    RESULTS: Thirty-five empirical articles met the criteria to be included in the current review. We provide a general overview of machine learning techniques, examine the feature categories, describe methodological challenges, and suggest areas for improvement and research directions. Ensemble prediction models have been shown to be more accurate and useful than single prediction models.

    CONCLUSIONS: Machine learning has great potential for improving estimates of future suicidal behaviour and monitoring changes in risk over time. Further research can address important challenges and potential opportunities that may contribute to significant advances in suicide prediction.

    Matched MeSH terms: Machine Learning
  16. Ramamurthy S, Meng Er H, Nadarajah VD, Pook PCK
    Curr Pharm Teach Learn, 2016 03 21;8(3):364-374.
    PMID: 30070247 DOI: 10.1016/j.cptl.2016.02.017
    OBJECTIVES: To study the impact of open and closed book formative examinations on pharmacy students' learning approach and also to assess their performance and perception about open book (OB) and closed book (CB) systems of examination.

    METHODS: A crossover study was conducted among Year 1 and Year 2 pharmacy students. Students were invited to participate voluntarily for one OB and one CB online formative test in a chemistry module in each year. Evaluation of their learning approach and perception of the OB and CB systems of examination was conducted using Deep Information Processing (DIP) questionnaire and Student Perception questionnaire respectively. The mean performance scores of OB and CB examinations were compared.

    RESULTS: Analysis of DIP scores showed that there was no significant difference (p > 0.05) in the learning approach adopted for the two different examination systems. However, the mean score obtained in the OB examination was significantly higher (p < 0.01) than those obtained in the CB examination. Preference was given by a majority of students for the OB examination, possibly because it was associated with lower anxiety levels, less requirement of memorization, and more problem solving.

    CONCLUSION: There is no difference in deep learning approach of students, whether the format is of the OB or CB type examinations. However, the performance of students was significantly better in OB examination than CB. Hence, using OB examination along with CB examination will be useful for student learning and help them adapt to growing and changing knowledge in pharmacy education and practice.

    Matched MeSH terms: Machine Learning
  17. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
    Matched MeSH terms: Machine Learning
  18. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al.
    Med Phys, 2016 May;43(5):2040.
    PMID: 27147316 DOI: 10.1118/1.4944738
    Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate.
    Matched MeSH terms: Machine Learning*
  19. Albadr MAA, Tiun S, Al-Dhief FT, Sammour MAM
    PLoS One, 2018;13(4):e0194770.
    PMID: 29672546 DOI: 10.1371/journal.pone.0194770
    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
    Matched MeSH terms: Machine Learning*
  20. Aburas MM, Ahamad MSS, Omar NQ
    Environ Monit Assess, 2019 Mar 05;191(4):205.
    PMID: 30834982 DOI: 10.1007/s10661-019-7330-6
    Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.
    Matched MeSH terms: Machine Learning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links