Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, et al.
    Oncogene, 2024 Feb;43(7):495-510.
    PMID: 38168654 DOI: 10.1038/s41388-023-02923-z
    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.
    Matched MeSH terms: Macrophages/metabolism
  2. Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, et al.
    Future Med Chem, 2024 Jan;16(1):75-99.
    PMID: 38205612 DOI: 10.4155/fmc-2023-0174
    Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
    Matched MeSH terms: Macrophages/metabolism
  3. Sivam HGP, Chin BY, Gan SY, Ng JH, Gwenhure A, Chan EWL
    Cancer Biol Ther, 2023 Dec 31;24(1):2284857.
    PMID: 38018872 DOI: 10.1080/15384047.2023.2284857
    Modified macrophages, tumor-associated macrophages (TAMs), are key contributors to the survival, growth, and metastatic behavior of pancreatic ductal adenocarcinoma (PDAC) cells. Central to the role of inflammation and TAMs lies the NLRP3 inflammasome. This study investigated the effects of LPS-stimulated inflammation on cell proliferation, levels of pro-inflammatory cytokines, and the NLRP3 inflammasome pathway in a co-culture model using PDAC cells and macrophages in the presence or absence of MCC950, a NLRP3-specific inhibitor. The effects of LPS-stimulated inflammation were tested on two PDAC cell lines (Panc 10.05 and SW 1990) co-cultured with RAW 264.7 macrophages. Cell proliferation was determined using the MTT assay. Levels of pro-inflammatory cytokines, IL-1β, and TNF-α were determined by ELISA. Western blot analyses were used to examine the expression of NLRP3 in both PDAC cells and macrophages. The co-culture and interaction between PDAC cell lines and macrophages led to pro-inflammatory microenvironment under LPS stimulation as evidenced by high levels of secreted IL-1β and TNF-α. Inhibition of the NLRP3 inflammasome by MCC950 counteracted the effects of LPS stimulation on the regulation of the NLRP3 inflammasome and pro-inflammatory cytokines in PDAC and macrophages. However, MCC950 differentially modified the viability of the metastatic vs primary PDAC cell lines. LPS stimulation increased PDAC cell viability by regulating the NLRP3 inflammasome and pro-inflammatory cytokines in the tumor microenvironment of PDAC cells/macrophages co-cultures. The specific inhibition of the NLRP inflammasome by MCC950 effectively counteracted the LPS-stimulated inflammation.
    Matched MeSH terms: Macrophages/metabolism
  4. Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, et al.
    Cell Oncol (Dordr), 2023 Aug;46(4):969-985.
    PMID: 37014552 DOI: 10.1007/s13402-023-00791-z
    PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate, in which about 90% of patients harbor somatic oncogenic point mutations in KRAS. SPRY family genes have been recognized as crucial negative regulators of Ras/Raf/ERK signaling. Here, we investigate the expression and role of SPRY proteins in PDAC.

    METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.

    RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.

    CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.

    Matched MeSH terms: Macrophages/metabolism
  5. Pang KL, Chin KY, Nirwana SI
    PMID: 36597600 DOI: 10.2174/1871530323666230103153134
    BACKGROUND: The immunomodulatory effects of plants have been utilised to enhance the immunity of humans against infections. However, evidence of such effects of agarwood leaves is very limited despite the long tradition of consuming the leaves as tea.

    OBJECTIVE: This study aimed to investigate the immuno-modulatory effects of agarwood leaf extract (ALE) derived from Aquilaria malaccensis using RAW264.7 murine macrophages.

    METHODS: In this study, RAW264.7 macrophages were incubated with ALE alone for 26 hours or ALE for 2 hours, followed by bacterial lipopolysaccharide for 24 hours. The nitrite and cytokine production (tumour necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, and IL-10), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) expression in the macrophages were assayed.

    RESULTS: The study showed that ALE alone was immunostimulatory on the macrophages by increasing the nitrite, TNFα, and IL-6 production and COX2 expression (p<0.05 vs. untreated unstimulated cells). Pre-treatment of ALE suppressed nitrite level and iNOS expression but enhanced TNFα and IL-6 production and COX2 expression (p<0.05 vs. untreated lipopolysaccharides (LPS)-stimulated cells). ALE also increased IL-10 production regardless of LPS stimulation (p<0.05 vs. untreated cells).

    CONCLUSION: ALE was able to promote the immune response of macrophages by upregulating pro-inflammatory cytokine levels and COX2 expression. It also regulated the extent of the inflammation by reducing iNOS expression and increasing IL-10 levels. Thus, ALE may have a role in enhancing the innate immune system against infection; however, its validation from in vivo studies is still pending.

    Matched MeSH terms: Macrophages/metabolism
  6. Zaidi NE, Shazali NAH, Leow TC, Osman MA, Ibrahim K, Cheng WH, et al.
    Cells, 2022 Nov 10;11(22).
    PMID: 36428985 DOI: 10.3390/cells11223556
    Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
    Matched MeSH terms: Macrophages/metabolism
  7. Yang P, Chen Y, Huang Z, Xia H, Cheng L, Wu H, et al.
    Elife, 2022 Oct 06;11.
    PMID: 36200862 DOI: 10.7554/eLife.80127
    Despite the importance of innate immunity in invertebrates, the diversity and function of innate immune cells in invertebrates are largely unknown. Using single-cell RNA-seq, we identified prohemocytes, monocytic hemocytes, and granulocytes as the three major cell-types in the white shrimp hemolymph. Our results identified a novel macrophage-like subset called monocytic hemocytes 2 (MH2) defined by the expression of certain marker genes, including Nlrp3 and Casp1. This subtype of shrimp hemocytes is phagocytic and expresses markers that indicate some conservation with mammalian macrophages. Combined, our work resolves the heterogenicity of hemocytes in a very economically important aquatic species and identifies a novel innate immune cell subset that is likely a critical player in the immune responses of shrimp to threatening infectious diseases affecting this industry.
    Matched MeSH terms: Macrophages/metabolism
  8. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Macrophages/metabolism
  9. Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, et al.
    Life Sci, 2021 Aug 01;278:119658.
    PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658
    AIMS: Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages.

    MATERIALS AND METHODS: An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit.

    KEY FINDINGS: The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages.

    SIGNIFICANCE: MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.

    Matched MeSH terms: Macrophages/metabolism
  10. Sok SPM, Ori D, Wada A, Okude H, Kawasaki T, Momota M, et al.
    Int Immunol, 2021 06 18;33(7):373-386.
    PMID: 33830232 DOI: 10.1093/intimm/dxab016
    The nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing (NLRP) 3 inflammasome is a multiprotein complex that triggers Caspase-1-mediated IL-1β production and pyroptosis, and its dysregulation is associated with the pathogenesis of inflammatory diseases. 1'-Acetoxychavicol acetate (ACA) is a natural compound in the rhizome of tropical ginger Alpinia species with anti-microbial, anti-allergic and anti-cancer properties. In this study, we found that ACA suppressed NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and human THP-1 monocytes. ACA inhibited Caspase-1 activation and IL-1β production by NLRP3 agonists such as nigericin, monosodium urate (MSU) crystals, and ATP. Moreover, it suppressed oligomerization of the adapter molecule, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1-mediated cleavage of pyroptosis executor Gasdermin D. Mechanistically, ACA inhibited generation of mitochondrial reactive oxygen species (ROS) and prevented release of oxidized mitochondrial DNA, which trigger NLRP3 inflammasome activation. ACA also prevented NLRP3 inflammasome activation in vivo, as evidenced in the MSU crystal-induced peritonitis and dextran sodium sulfate-induced colitis mouse models accompanied by decreased Caspase-1 activation. Thus, ACA is a potent inhibitor of the NLRP3 inflammasome for prevention of NLRP3-associated inflammatory diseases.
    Matched MeSH terms: Macrophages/metabolism
  11. Hong X, Ajat M, Fakurazi S, Noor AM, Ismail IS
    J Ethnopharmacol, 2021 Mar 25;268:113647.
    PMID: 33271242 DOI: 10.1016/j.jep.2020.113647
    ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven.

    AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.

    MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.

    RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.

    CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.

    Matched MeSH terms: Macrophages/metabolism
  12. Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, et al.
    Arch Pharm (Weinheim), 2021 Jan;354(1):e2000161.
    PMID: 32886410 DOI: 10.1002/ardp.202000161
    A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
    Matched MeSH terms: Macrophages/metabolism
  13. Tham YY, Choo QC, Muhammad TST, Chew CH
    Mol Biol Rep, 2020 Dec;47(12):9595-9607.
    PMID: 33259010 DOI: 10.1007/s11033-020-06019-9
    Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.
    Matched MeSH terms: Macrophages/metabolism
  14. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Macrophages/metabolism
  15. Lee SY, Wong WF, Dong J, Cheng KK
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825228 DOI: 10.3390/molecules25173783
    Macrophage activation is a key event that triggers inflammatory response. The activation is accompanied by metabolic shift such as upregulated glucose metabolism. There are accumulating evidences showing the anti-inflammatory activity of Momordica charantia. However, the effects of M. charantia on inflammatory response and glucose metabolism in activated macrophages have not been fully established. The present study aimed to examine the effect of M. charantia in modulating lipopolysaccharide (LPS)-induced inflammation and perturbed glucose metabolism in RAW264.7 murine macrophages. The results showed that LPS-induced NF-κB (p65) nuclear translocation was inhibited by M. charantia treatment. In addition, M. charantia was found to reduce the expression of inflammatory genes including IL6, TNF-α, IL1β, COX2, iNOS, and IL10 in LPS-treated macrophages. Furthermore, the data showed that M. charantia reduced the expression of GLUT1 and HK2 genes and lactate production (-28%), resulting in suppression of glycolysis. Notably, its effect on GLUT1 gene expression was found to be independent of LPS-induced inflammation. A further experiment also indicated that the bioactivities of M. charantia may be attributed to its key bioactive compound, charantin. Taken together, the study provided supporting evidences showing the potential of M. charantia for the treatment of inflammatory disorders.
    Matched MeSH terms: Macrophages/metabolism*
  16. Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee LH, et al.
    J Cell Mol Med, 2020 01;24(1):722-736.
    PMID: 31680470 DOI: 10.1111/jcmm.14780
    Evidence demonstrates that M1 macrophage polarization promotes inflammatory disease. Here, we discovered that (R)-salbutamol, a β2 receptor agonist, inhibits and reprograms the cellular metabolism of RAW264.7 macrophages. (R)-salbutamol significantly inhibited LPS-induced M1 macrophage polarization and downregulated expressions of typical M1 macrophage cytokines, including monocyte chemotactic protein-1 (MCP-1), interleukin-1β (IL-1β) and tumour necrosis factor α (TNF-α). Also, (R)-salbutamol significantly decreased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and reactive oxygen species (ROS), while increasing the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. In contrast, (S)-salbutamol increased the production of NO and ROS. Bioenergetic profiles showed that (R)-salbutamol significantly reduced aerobic glycolysis and enhanced mitochondrial respiration. Untargeted metabolomics analysis demonstrated that (R)-salbutamol modulated metabolic pathways, of which three metabolic pathways, namely, (a) phenylalanine metabolism, (b) the pentose phosphate pathway and (c) glycerophospholipid metabolism were the most noticeably impacted pathways. The effects of (R)-salbutamol on M1 polarization were inhibited by a specific β2 receptor antagonist, ICI-118551. These findings demonstrated that (R)-salbutamol inhibits the M1 phenotype by downregulating aerobic glycolysis and glycerophospholipid metabolism, which may propose (R)-salbutamol as the major pharmacologically active component of racemic salbutamol for the treatment of inflammatory diseases and highlight the medicinal value of (R)-salbutamol.
    Matched MeSH terms: Macrophages/metabolism*
  17. Ong MH, Wong HK, Tengku-Muhammad TS, Choo QC, Chew CH
    Mol Biol Rep, 2019 Jun;46(3):2631-2641.
    PMID: 30989556 DOI: 10.1007/s11033-019-04661-6
    The prevalence of atherosclerosis has increased significantly in the recent years due to sedentary lifestyle and high-fat diet. However, the association between saturated fat intake and the increased risk for atherosclerotic cardiovascular diseases remains heavily debated. Lauric acid belongs to the saturated fatty acid group and its unique medium chain fatty acid properties are proven to be beneficial to humans in many ways. Thus, the aim of this project is to investigate the effect of lauric acid on the expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) genes-ADAMTS-1, ADAMTS-4, and ADAMTS-5-in macrophages. These genes encode for proteases that participate in the extracellular matrix remodeling and they play important roles in the vulnerability of atherosclerotic plaque. Here, we show that the treatment of 20 µM of lauric acid successfully reduced both transcriptional and translational expressions of these genes in THP-1 differentiated macrophages after 24-h incubation. Further cell signaling experiments using a panel of kinase inhibitors and phosphorylated antibodies proved that lauric acid down-regulated ADAMTS-1 by reducing the activation of PI3K and JNK at Tyr458 and Tyr185, respectively. Finally, JNK1 siRNA knockdown assay confirmed that ADAMTS-1 was regulated through JNK pathway, and lauric acid interfered with this pathway to down-regulate ADAMTS-1 expression. Although preliminary, this present study indicates that lauric acid has the potential to stabilize atherosclerotic plaque and may prevent thrombosis by interfering with the ADAMTS-1 expression through PI3K/JNK pathways.
    Matched MeSH terms: Macrophages/metabolism
  18. Looi CK, Chung FF, Leong CO, Wong SF, Rosli R, Mai CW
    J Exp Clin Cancer Res, 2019 Apr 15;38(1):162.
    PMID: 30987642 DOI: 10.1186/s13046-019-1153-8
    BACKGROUND: Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME).

    MAIN BODY: In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME.

    CONCLUSIONS: It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.

    Matched MeSH terms: Macrophages/metabolism
  19. Daood U, Fawzy AS
    Arch Oral Biol, 2019 Feb;98:195-203.
    PMID: 30502562 DOI: 10.1016/j.archoralbio.2018.10.019
    OBJECTIVE: To investigate effects of HIFU on macrophage phenotype, surface micro-topography and nano-scale surface mechanical properties of dental cementum.

    MATERIALS AND METHODS: Root discs (2 mm thickness) were cut apical to CEJ and sectioned into quadrants. HIFU setup with bowl-shaped piezo ceramic transducer submerged in a water tank was used for exposure on each specimen for 15 s, 30 s or 60 s. The specimens of the control group were left without any HIFU exposure. HIFU was generated with a continuous sinusoidal wave of 120Vpp amplitude, 250 KHZ resonance-frequency and highest ultrasonic pressure of ∼10 bar at the focus. Specimens for SEM were viewed, and micro-topography characterization performed, using AFM and Ra parameter and surface area (SA) calculated by specialized SPM surface analysis software. For nano-indentation testing, experiments were carried out using AFM. Macrophage cell isolation and culturing was performed on cementum to receive the HIFU treatment at different time periods. Raman spectroscopy were scanned to create spectra perpendicular to the cementum substrate to analyze generation of standard spectra for Raman intensity ratio of hydroxyapatite normalized to the peaks ν1 960 cm-1. Data was expressed as means ± standard deviations and analyzed by one-way ANOVA in term of Ra, SA, H and Er. Different points for fluorescence intensity ratio were analyzed by Raman using Wilcoxon rank sum test.

    RESULTS: HIFU exposure at 60 s removed the smear layer and most of cementum appeared smoothened. AFM characterisation, showed a slight decrease in the irregularity of the surface as exposure time increased. Intact macrophages can be identified in control and all experimental HIFU groups. The level of fluorescence for the control and HIFU 15 and 30 s were low as compared to HIFU 60 s.

    CONCLUSION: If HIFU can be successfully implemented, it may be a possible alternative to current methods used in periodontal therapy to achieve smooth root surfaces.

    Matched MeSH terms: Macrophages/metabolism*
  20. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Macrophages/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links