Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, et al.
    PeerJ, 2017;5:e4030.
    PMID: 29158974 DOI: 10.7717/peerj.4030
    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
    Matched MeSH terms: Metabolic Engineering
  2. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
    Matched MeSH terms: Metabolic Engineering
  3. Ikram NK, Zhan X, Pan XW, King BC, Simonsen HT
    Front Plant Sci, 2015;6:129.
    PMID: 25852702 DOI: 10.3389/fpls.2015.00129
    Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavors, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requires many steps and difficult chemical reactions, resulting in a low final yield or incorrect stereochemistry. Several drug candidates with terpene skeletons are difficult to obtain by chemical synthesis due to their large number of chiral centers. Thus, biological production remains the preferred method for industrial production for many of these compounds. However, because these chemicals are often found in low abundance in the native plant, or are produced in plants which are difficult to cultivate, there is great interest in engineering increased production or expression of the biosynthetic pathways in heterologous hosts. Although there are many examples of successful engineering of microbes such as yeast or bacteria to produce these compounds, this often requires extensive changes to the host organism's metabolism. Optimization of plant gene expression, post-translational protein modifications, subcellular localization, and other factors often present challenges. To address the future demand for natural products used as drugs, new platforms are being established that are better suited for heterologous production of plant metabolites. Specifically, direct metabolic engineering of plants can provide effective heterologous expression for production of valuable plant-derived natural products. In this review, our primary focus is on small terpenoids and we discuss the benefits of plant expression platforms and provide several successful examples of stable production of small terpenoids in plants.
    Matched MeSH terms: Metabolic Engineering
  4. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
    Matched MeSH terms: Metabolic Engineering/methods
  5. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
    Matched MeSH terms: Metabolic Engineering/methods*
  6. Sankari M, Rao PR, Hemachandran H, Pullela PK, Doss C GP, Tayubi IA, et al.
    J Biotechnol, 2018 Jan 20;266:89-101.
    PMID: 29247672 DOI: 10.1016/j.jbiotec.2017.12.010
    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites.
    Matched MeSH terms: Metabolic Engineering/methods*
  7. Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, et al.
    J Agric Food Chem, 2021 Oct 27;69(42):12385-12401.
    PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632
    Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
    Matched MeSH terms: Metabolic Engineering
  8. Ho CL
    Front Plant Sci, 2015;6:1057.
    PMID: 26635861 DOI: 10.3389/fpls.2015.01057
    Many algae are rich sources of sulfated polysaccharides with biological activities. The physicochemical/rheological properties and biological activities of sulfated polysaccharides are affected by the pattern and number of sulfate moieties. Sulfation of carbohydrates is catalyzed by carbohydrate sulfotransferases (CHSTs) while modification of sulfate moieties on sulfated polysaccharides was presumably catalyzed by sulfatases including formylglycine-dependent sulfatases (FGly-SULFs). Post-translationally modification of Cys to FGly in FGly-SULFs by sulfatase modifiying factors (SUMFs) is necessary for the activity of this enzyme. The aims of this study are to mine for sequences encoding algal CHSTs, FGly-SULFs and putative SUMFs from the fully sequenced algal genomes and to infer their phylogenetic relationships to their well characterized counterparts from other organisms. Algal sequences encoding CHSTs, FGly-SULFs, SUMFs, and SUMF-like proteins were successfully identified from green and brown algae. However, red algal FGly-SULFs and SUMFs were not identified. In addition, a group of SUMF-like sequences with different gene structure and possibly different functions were identified for green, brown and red algae. The phylogeny of these putative genes contributes to the corpus of knowledge of an unexplored area. The analyses of these putative genes contribute toward future production of existing and new sulfated carbohydrate polymers through enzymatic synthesis and metabolic engineering.
    Matched MeSH terms: Metabolic Engineering
  9. Huong KH, Sevakumaran V, Amirul AA
    Crit Rev Biotechnol, 2021 Jun;41(4):474-490.
    PMID: 33726581 DOI: 10.1080/07388551.2020.1869685
    Polyhydroxyalkanoate (PHA) is a biogenic polymer that has the potential to substitute synthetic plastic in numerous applications. This is due to its unique attribute of being a biodegradable and biocompatible thermoplastic, achievable through microbial fermentation from a broad utilizable range of renewable resources. Among all the PHAs discovered, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] stands out as a next generation healthcare biomaterial for having high biopharmaceutical and medical value since it is highly compatible to mammalian tissue. This review provides a critical assessment and complete overview of the development and trend of P(3HB-co-4HB) research over the last few decades, highlighting aspects from the microbial strain discovery to metabolic engineering and bioprocess cultivation strategies. The article also outlines the relevance of P(3HB-co-4HB) as a material for high value-added products in numerous healthcare-related applications.
    Matched MeSH terms: Metabolic Engineering
  10. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan EF, et al.
    PLoS One, 2012;7(12):e52444.
    PMID: 23300671 DOI: 10.1371/journal.pone.0052444
    Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.
    Matched MeSH terms: Metabolic Engineering/methods*
  11. Tang PW, Choon YW, Mohamad MS, Deris S, Napis S
    J Biosci Bioeng, 2015 Mar;119(3):363-8.
    PMID: 25216804 DOI: 10.1016/j.jbiosc.2014.08.004
    Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.
    Matched MeSH terms: Metabolic Engineering*
  12. Soo CS, Yap WS, Hon WM, Phang LY
    World J Microbiol Biotechnol, 2015 Oct;31(10):1475-88.
    PMID: 26185061 DOI: 10.1007/s11274-015-1902-6
    The simultaneous production of hydrogen and ethanol by microorganisms from waste materials in a bioreactor system would establish cost-effective and time-saving biofuel production. This review aims to present the current status of fermentation processes producing hydrogen accompanied by ethanol as a co-product. We outlined the microbes used and their fundamental pathways for hydrogen and ethanol fermentation. Moreover, we discussed the exploitation of renewable and sustainable waste materials as promising feedstock and the limitations encountered. The low substrate bioconversion rate in hydrogen and ethanol co-production is regarded as the primary constraint towards the development of large scale applications. Thus, microbes with an enhanced capability have been generated via genetic manipulation to diminish the inefficiency of substrate consumption. In this review, other potential approaches to improve the performance of co-production through fermentation were also elaborated. This review will be a useful guide for the future development of hydrogen and ethanol co-production using waste materials.
    Matched MeSH terms: Metabolic Engineering/methods
  13. Baharum SN, Azizan KA
    Adv Exp Med Biol, 2018 11 2;1102:51-68.
    PMID: 30382568 DOI: 10.1007/978-3-319-98758-3_4
    Over the last decade, metabolomics has continued to grow rapidly and is considered a dynamic technology in envisaging and elucidating complex phenotypes in systems biology area. The advantage of metabolomics compared to other omics technologies such as transcriptomics and proteomics is that these later omics only consider the intermediate steps in the central dogma pathway (mRNA and protein expression). Meanwhile, metabolomics reveals the downstream products of gene and expression of proteins. The most frequently used tools are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Some of the common MS-based analyses are gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These high-throughput instruments play an extremely crucial role in discovery metabolomics to generate data needed for further analysis. In this chapter, the concept of metabolomics in the context of systems biology is discussed and provides examples of its application in human disease studies, plant responses towards stress and abiotic resistance and also microbial metabolomics for biotechnology applications. Lastly, a few case studies of metabolomics analysis are also presented, for example, investigation of an aromatic herbal plant, Persicaria minor metabolome and microbial metabolomics for metabolic engineering applications.
    Matched MeSH terms: Metabolic Engineering
  14. Kabir, M.U., Abdulkarim, S.M., Son, R., Azizah, A.H., Saari, N.B.
    MyJurnal
    Phytochemicals belonging to the group’s phenols, terpenes, betalains, organosulfides, indoles and protein inhibitors are important components in fruits, vegetables, legumes, whole grains and nuts that have health promoting benefits and a variety of applications in food and pharmaceutical industries. Initially only a few of these important phytochemicals are produced commercially by chemical synthesis. However, recent developments in the field of biotechnology have provided metabolic engineering strategies that use microorganisms as cell factories for high production of these products. This review will discuss the general biosynthetic pathways, metabolic engineering and optimization strategies of functional phytochemicals that have received a lot of attention from investigators.
    Matched MeSH terms: Metabolic Engineering
  15. Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE
    Plant Cell Tissue Organ Cult., 2018;134(1):41-53.
    PMID: 31007320 DOI: 10.1007/s11240-018-1398-5
    Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus's geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.
    Matched MeSH terms: Metabolic Engineering
  16. Ramzi AB
    Adv Exp Med Biol, 2018 11 2;1102:81-95.
    PMID: 30382570 DOI: 10.1007/978-3-319-98758-3_6
    In the modern era of next-generation genomics and Fourth Industrial Revolution, there is a growing demand for translational research that brings about not only impactful research but also potential commercialisation of R- and D-based products. Advancement of metabolic engineering and synthetic biology has put forward a viable and innovative biotechnological platform for bioproduct development especially using microbial chassis. In this chapter, readers will be introduced on the concepts of metabolic engineering, synthetic biology and microbial chassis and the applications of these biological engineering (BioE) components in the advancement of industrial and agricultural biotechnology. Main strategies in employing BioE platform are discussed especially for waste bioconversion and value-added product development. More importantly, this chapter will also discuss current endeavours in integrating systems and synthetic biology for microbial production of natural products by introducing flavonoid biosynthesis genes of Polygonum minus, a medicinally important tropical plant in engineered yeast.
    Matched MeSH terms: Metabolic Engineering*
  17. Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE
    FEMS Microbiol Lett, 2018 10 01;365(20).
    PMID: 30169778 DOI: 10.1093/femsle/fny213
    Lactic acid bacteria constitute a diverse group of industrially significant, safe microorganisms that are primarily used as starter cultures and probiotics, and are also being developed as production systems in industrial biotechnology for biocatalysis and transformation of renewable feedstocks to commodity- and high-value chemicals, and health products. Development of strains, which was initially based mainly on natural approaches, is also achieved by metabolic engineering that has been facilitated by the availability of genome sequences and genetic tools for transformation of some of the bacterial strains. The aim of this paper is to provide a brief overview of the potential of lactic acid bacteria as biological catalysts for production of different organic compounds for food and non-food sectors based on their diversity, metabolic- and stress tolerance features, as well as the use of genetic/metabolic engineering tools for enhancing their capabilities.
    Matched MeSH terms: Metabolic Engineering/methods
  18. Goh HH
    Adv Exp Med Biol, 2018 11 2;1102:69-80.
    PMID: 30382569 DOI: 10.1007/978-3-319-98758-3_5
    This chapter introduces different aspects of bioinformatics with a brief discussion in the systems biology context. Example applications in network pharmacology of traditional Chinese medicine, systems metabolic engineering, and plant genome-scale modelling are described. Lastly, this chapter concludes on how bioinformatics helps to integrate omics data derived from various studies described in previous chapters for a holistic understanding of secondary metabolite production in P. minus.
    Matched MeSH terms: Metabolic Engineering*
  19. Man MY, Mohamad MS, Choon YW, Ismail MA
    J Integr Bioinform, 2021 Aug 04;18(3).
    PMID: 34348418 DOI: 10.1515/jib-2020-0037
    Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce. The prediction of genetic manipulations such as gene knockout is part of metabolic engineering. Gene knockout can be used to optimize the microbial strains, such as to maximize the production rate of chemicals of interest. Metabolic and genetic engineering is important in producing the chemicals of interest as, without them, the product yields of many microorganisms are normally low. As a result, the aim of this paper is to propose a combination of the Bat algorithm and the minimization of metabolic adjustment (BATMOMA) to predict which genes to knock out in order to increase the succinate and lactate production rates in Escherichia coli (E. coli).
    Matched MeSH terms: Metabolic Engineering
  20. Mienda BS, Shamsir MS
    J Biomol Struct Dyn, 2015;33(11):2380-9.
    PMID: 25921851 DOI: 10.1080/07391102.2015.1036461
    Systems metabolic engineering and in silico analyses are necessary to study gene knockout candidate for enhanced succinic acid production by Escherichia coli. Metabolically engineered E. coli has been reported to produce succinate from glucose and glycerol. However, investigation on in silico deletion of ptsG/b1101 gene in E. coli from glycerol using minimization of metabolic adjustment algorithm with the OptFlux software platform has not yet been elucidated. Herein we report what is to our knowledge the first direct predicted increase in succinate production following in silico deletion of the ptsG gene in E. coli GEM from glycerol with the OptFlux software platform. The result indicates that the deletion of this gene in E. coli GEM predicts increased succinate production that is 20% higher than the wild-type control model. Hence, the mutant model maintained a growth rate that is 77% of the wild-type parent model. It was established that knocking out of the ptsG/b1101 gene in E. coli using glucose as substrate enhanced succinate production, but the exact mechanism of this effect is still obscure. This study informs other studies that the deletion of ptsG/b1101 gene in E. coli GEM predicted increased succinate production, enabling a model-driven experimental inquiry and/or novel biological discovery on the underground metabolic role of this gene in E. coli central metabolism in relation to increasing succinate production when glycerol is the substrate.
    Matched MeSH terms: Metabolic Engineering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links