Anglerfish from the genus Lophius are a globally important commercial fishery. The microsporidian Spraguea infects the nervous system of these fish resulting in the formation of large, visible parasitic xenomas. Lophius litulon from Japan were investigated to evaluate the intensity and distribution of Spraguea xenomas throughout the nervous system and to assess pathogenicity to the host and possible transmission routes of the parasite. Spraguea infections in L. litulon had a high prevalence; all fish over 403 mm in standard length being infected, with larger fish usually more heavily infected than smaller fish. Seventy percent of all fish examined had some gross visible sign of infection. The initial site of development is the supramedullary cells on the dorsal surface of the medulla oblongata, where all infected fish have parasitic xenomas. As the disease progresses, a number of secondary sites typically become infected such as the spinal, trigeminal and vagus nerves. Fish with infection in the vagus nerve bundles often have simultaneous sites of infection, in particular the spinal nerves and along the ventral nerve towards the urinary bladder. Advanced vagus nerve infections sometimes form xenomas adjacent to kidney tissue. Spraguea DNA was amplified from the contents of the urinary bladders of two fish, suggesting that microsporidian spores may be excreted in the urine. We conclude that supramedullary cells on the hindbrain are the primary site of infection, which is probably initiated at the cutaneous mucous glands where supramedullary cells are known to extend their peripheral axons. The prevalence of Spraguea infections in L. litulon was very high, and infections often extremely heavy; however, no associated pathogenicity was observed, and heavily infected fish were otherwise normal.
Routine diagnosis of intestinal microsporidiosis in clinical diagnostic laboratories relies mostly on detection of microsporidial spores via special staining and microscopic techniques. This paper describes the comparative evaluation of Calcofluor White M2R method, with modified Gram-chromotrope Kinyoun method as the reference standard. One hundred and six stool samples were examined for the presence of microsporidial spores. Sensitivity, specificity, positive and negative predictive values of the Calcofluor White M2R method compared to the reference technique were 95.2%, 4.3%, 78.2% and 20.0%, respectively. The positive predictive value (PPV) was 78.2% and the negative predictive value (NPV) was 20.0%. Despite low specificity of the CFW method due to its ability to stain chitinous wall of microorganisms, the presence of distinct deep-blue horizontal or equitorial stripes in microsporidial spores in modified Gram-chromotrope Kinyoun would likely reduce the false positive results obtained in the Calcofluor White M2R. Hence, the simultaneous use of these two methods would give better performance and accuracy for the detection of microsporidial spores in patients with intestinal microsporidiosis.
Microsporidia are ubiquitous parasites thought to be closely related to fungi. Their presence in the environment means that humans are frequently exposed to infection. Stool samples were collected from 151 indigenous villagers from the eastern state of Pahang in 2005. The samples were concentrated with water-ether sedimentation, stained with modified trichrome stain and examined under oil-immersion microscopy. Thirty-two specimens (21.2%) were positive for microsporidia. Microsporidia were observed as ovoid or rounded ovoid shapes measuring approximately 1mum, with a bright pink outline containing a central or posterior vacuole. PCR amplification with specific primers on microscopy-positive specimens amplified Encephalitozoon intestinalis DNA from five of the ten specimens used.
An observational study was carried out to establish the existence of intestinal microsporidiosis among patients with and without gastrointestinal symptoms in Hospital Universiti Kebangsaan Malaysia, Malaysia. A total of 893 faecal specimens from hospitalized patients were examined for microsporidia using a modification of the usual Gram-chromotrope stain technique. One hundred and sixteen (13.0%) patients were positive for microsporidia: 84 (72.4%), 27 (23.3%) and 5 (4.3%) were low, moderate and high excreters of microsporidia spores, respectively. Of the 91 patients with available medical records, microsporidiosis was commonly observed in children aged 0-6 years (26.4%) and adults aged >or=31 years (57.2%). About one-third of this infection was observed in immunocompetent individuals. Among the immunosuppressive group, microsporidia were observed to be more prevalent in patients with haematological malignancy or a combination of malignancy and diabetes mellitus. About 74% of the patients who had microsporidia in their faeces had gastrointestinal symptoms, which could be related to infections or induced by immunosuppressive therapy. The role of microsporidia in causing gastrointestinal symptoms in this population is as yet unclear.
The HIV-positive population, due to their immuno-compromised nature, is considered more susceptible to parasitic infections than other populations. However despite the reports of other opportunistic pathogens such as Cryptosporidium and tuberculosis reported in vulnerable communities, microsporidia have not been highlighted in the local HIV-positive population in Malaysia. This study aimed to provide preliminary information on the prevalence of microsporidia in the local HIV-population. Microsporidia were detected in 21/247 (8.5%) stool samples from the HIV-infected individuals, a significantly higher (P-value <0.05) prevalence than in the control group, in which 5/173 (2.9%) were positive. HIV patients were 3x more at risk for acquiring microspordium (OR: 3.12; 95% CI 1.15-8.44). Spores were ellipsoid in shape with outlines that stained dark pink with the interior a lighter shade. Approximately 21% of the positive specimens were from individuals in the 40-49 years age group. Ten individuals who were positive for microsporidia were also positive for other enteric parasites such as Blastocystis hominis and Giardia lamblia. We detected Encephalitozoon intestinalis DNA following nested PCR from three of 10 samples analysed, as demonstrated by an amplicon of 370bp. From the findings reported, it appears that microsporidial infection in humans may actually be more common than reported. We strongly advocate greater emphasis on personal hygiene through public education on personal hygiene and the consumption of boiled or filtered water.
Matched MeSH terms: Microsporidiosis/diagnosis*; Microsporidiosis/epidemiology; Microsporidiosis/prevention & control
Commercial fisheries of lumpfish Cyclopterus lumpus have been carried out in Iceland for centuries. Traditionally the most valuable part is the eggs which are harvested for use as a caviar substitute.Previously reported parasitic infections from lumpfish include an undescribed intranuclear microsporidian associated with abnormal kidneys and mortalities in captive lumpfish in Canada. During Icelandic lumpfish fisheries in spring 2011, extensive enlargements to the kidneys were observed in some fish during processing. The aim of this study was to identify the pathogen responsible for these abnormalities.
Enterocytozoon bieneusi is an emerging opportunistic pathogen infecting humans, and both domestic and wild pigs are known to harbour zoonotic genotypes. There remains a paucity of information on the prevalence and epidemiology of this enteropathogen in Southeast Asia. The present study was undertaken to determine the molecular prevalence and risk factors associated with E. bieneusi infection among commercially farmed pigs in Malaysia. Faecal samples were collected from 450 pigs from 15 different farms and subjected to nested PCR amplification of the ribosomal internal transcribed spacer (ITS) gene of E. bieneusi. Phylogenetic analysis involved 28 nucleotide sequences of the ITS region of E. bieneusi. An interviewer-administered questionnaire provided information on the animal hosts, farm management systems and environmental factors and was statistically analysed to determine the risk factors for infection. The prevalence of E. bieneusi infection was relatively high (40.7%). The highest prevalence (51.3%) was recorded among the piglets, while the adults showed the lowest level of infection (31.3%). Multivariate analysis indicated that age of the pigs, distance of the farm from human settlement and farm management system were significant risk factors of infection. Three genotypes (EbpA, EbpC and Henan-III) detected among the pigs are potentially zoonotic. The high prevalence of E. bieneusi among locally reared pigs, the presence of zoonotic genotypes and the spatial distribution of pig farms and human settlements warrant further investigation on the possibility of zoonotic transmission.
Most studies of opportunistic infections focus on immunocompromised patients. However, there is a lack of information on microsporidiosis in healthy people (immunocompetent) worldwide. This study aimed to detect and identify microsporidia species in immunocompetent Orang Asli living in Pahang, Malaysia. Orang Asli is a collective term for a group of indigenous people that usually reside in the interior regions of Peninsular Malaysia. They comprise about 0.7% of the total population in Malaysia and 76% of them lived below the poverty line i.e., poor housing conditions with the lack of access to safe drinking water and adequate sanitation, contaminated environment, high illiteracy rate and unhygienic practices by these people. Stool samples were collected from 209 Orang Asli and analyzed for detecting the presence of Enterocytozoon bieneusi and Encephalitozoon intestinalis by polymerase chain reaction assay targeting small subunit ribosomal RNA gene. E. bieneusi was detected in 8 individuals (3.83%). This infection was commonly found in males than females (5.2% vs. 2.7%). All infected Orang Asli were adults, with a mean age of 44years. Diarrhea and other gastrointestinal symptoms were reported in one case (12.5%) among individuals infected with this species. These findings clearly show that exposure to E. bieneusi may actually be common than reported. The accurate detection and identification of microsporidian species by molecular technique will improve therapy, clinical manifestations and prognosis of this infection, as no antiparasitic therapy has been approved for E. bieneusi. It is hoped that these findings will allow the formulation of better health management and disease prevention advisories, and improvement in the standards of health in similar communities.
Matched MeSH terms: Microsporidiosis/ethnology*; Microsporidiosis/microbiology*; Microsporidiosis/prevention & control
The purpose of this study is to review the literature on microsporidiosis in various high-risk groups among the Malaysian population, i.e., HIV/AIDS, cancer, hospitalised patients and Orang Asli, and to update information with regards to microsporidia prevalence, diagnosis and association of the disease with gastrointestinal symptoms in Malaysia. Hospitalised patients showed the highest prevalence (28.3%) of microsporidiosis compared to other risk groups. This review did not find any direct correlations between gastrointestinal symptoms and microsporidiosis. Since microsporidiosis is an emerging threat to the high-risk groups, greater awareness should be instilled among clinicians to consider microsporidiosis in their differential diagnosis if no other causes can be defined.
Studies on microsporidial infection mostly focus on immunodeficiency or immunosuppressive individuals. Therefore, this cross-sectional study describes the prevalence and risk factors of microsporidiosis among asymptomatic individuals in Malaysia.
Microsporidia are obligate intracellular parasitic fungi causing chronic diarrhea, particularly among immunocompromised patients. The current method used for diagnosis is based on conventional microscopy, which does not differentiate parasites at the species level. The present study was carried out to identify microsporidian species in immunocompromised patients. From March 2016 to March 2017, a total of 289 archived stool samples were examined microscopically for microsporidian spores using Gram-chromotrope Kinyoun (GCK) stain. Positive stool samples by microscopy were subjected to polymerase chain reaction and sequencing for species identification. Based on microscopy examination, the overall prevalence of microsporidian infections was 32.2% (93/289; 95% CI = 27.1-37.8). Of these stool samples, 45 samples were successfully amplified and confirmed as Enterocytozoon bieneusi. No Encephalitozoon intestinalis was detected. Accurate identification of species might help clinicians to decide appropriate management strategies as dissemination risks and treatment response vary for different species, hence improving the management of microsporidian infections.
Disseminated microsporidiosis is a life-threatening disease resulting from the haematogenous spread of microsporidia species. The diagnosis is challenging owing to its subtle nonspecific clinical presentation, which usually reflects the underlying organ involved. Therefore, a high index of suspicion is required for early diagnosis. Besides, tools for confirmatory laboratory diagnosis are limited. Currently, there is no direct diagnostic method that can detect the infection without involving invasive procedures. Clinical confirmation of disseminated microsporidiosis is usually based on light and transmission electron microscopy of infected tissue specimens. These are then followed by species detection using polymerase chain reaction (PCR). Disseminated microsporidiosis shows the potential to be cleared up by albendazole or fumagillin if they are detected and treated early. Based on a series of case reports, this review aims to present a current update on disseminated microsporidiosis with emphasis on the clinical manifestations based on the organ system infected, diagnostic approach and treatment of this devastating condition.
Abstract. The species identification of Enterocytozoon bieneusi and Encephalitozoon intestinalis is only possible using transmission electron microscopy (TEM), mo lecular techniques and immunofluorescence antibody assays (IFA). In this study, 50 positive and 50 negative fecal specimens for microsporidial spores using the Weber modified trichrome (WMT) staining technique were examined using IFA-MAbs. Of the 100 specimens examined, the microsporidial spores identified by IFA-MAbs were Enterocytozoon Bieneusi 42 (75%) Encephalitozoon intestinalis 7 (12.5%) and mixed infections 7 (12.5%). The sensitivity and specificity of IFA-MAbs in detecting microsporidial spores were 98% and 86%, respectively. The agreement between the WMT staining technique and IFA-MAbs was statistically significant by Kappa statistics (K = 0.840; p < 0.001). E. bieneusi was the commonest Microsporidia species isolated from the studied population; the presence of microsporidial spores detected by IFA-MAbs should be confirmed by other methods.
This study was conducted to evaluate the modification of the usual Gram-chromotrope staining technique developed in-house known as Gram-chromotrope Kinyoun (GCK) in comparison with the Weber Modified Trichrome (WMT) staining technique; as the reference technique. Two hundred and ninety fecal specimens received by the Microbiology Diagnostic Laboratory of Hospital Universiti Kebangsaan Malaysia were examined for the presence of microsporidial spores. The sensitivity and specificity of GCK compared to the reference technique were 98% and 98.3%, respectively. The positive and negative predictive values were 92.5% and 99.6%, respectively. The agreement between the reference technique and the GCK staining technique was statistically significant by Kappa statistics (K = 0.941, P < 0.001). It is concluded that the GCK staining technique has high sensitivity and specificity in the detection of microsporidial spores in fecal specimens. Hence, it is recommended to be used in the diagnosis of intestinal microsporidiosis.
Hepatic involvement in extra-pulmonary tuberculosis (TB) is rare, even in the endemic area. It has a high mortality rate as it can easily be misdiagnosed due to its rarity and non-specific presentations, and the treatment can be challenging for its hepatotoxic side-effect. A 55-year old man who was newly diagnosed with AIDS and pulmonary TB which complicated with anti-TB-induced transaminitis, presented with a few weeks history of fever and persistent diarrhoea. It was initially treated as microsporidia infection but the symptoms persisted despite given antiparasitic agent for more than a week. He was subjected to computed tomography (CT) scan of the abdomen and noted multiple hypoechoic lesion at multiple segments of the liver, which later confirmed to be liver TB by liver biopsy. As he could not tolerate Akurit-4 (Rifampicin 150 mg, Isoniazid 75 mg, Pyrazinamide 400 mg and Ethambutol 275 mg), the second-line treatment was given instead. He is currently well on regular clinic appointment. The objective of this case report is to share the rare occurrence of hepatic TB and the difficulty to treat it as the hepatotoxic effect of anti-TB medications complicate the liver damage due to the infection.
Intestinal protozoa are increasingly being studied because of their association with acute and chronic diarrhoea in immunocompromised as well as immunocompetent patients. Various community outbreaks due to contamination of water or food with these protozoa have further highlighted their importance in public health. Among these important pathogens are Giardia duodenalis, Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, and microsporidia. Except for the cyst-forming G. duodenalis and E. histolytica, the others are intracellular and form spores which are passed out with the faeces. These organisms are also found in various animals and birds and zoonotic transmission is thought to occur. These infections are distributed worldwide, with a higher prevalence in developing compared to developed countries. However, the relative importance of zoonotic infections especially in developing countries has not been studied in detail. The prevalence rates are generally higher in immunodeficient compared to immunocompetent patients. Higher prevalence rates are also seen in rural compared to urban communities. Most studies on prevalence have been carried out in developed countries where the laboratory and other health infrastructure are more accessible than those in developing countries. This relative inadequacy of laboratory diagnosis can affect accurate estimates of the prevalence of these infections in developing countries. However, reports of these infections in travellers and workers returning from developing countries can provide some indication of the extent of these problems. Most studies on prevalence of amoebiasis in developing countries were based on morphological identification of the parasite in faecal smears. As the pathogenic E. histolytica is morphologically indistinguishable from that of non-pathogenic E. dispar, estimates of amoebiasis may not be accurate. The epidemiology of human microsporidia infections is not completely understood. Two species, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans and it is believed that human to human as well as animal to human infections occur. However, the importance of zoonotic infections has not been fully characterised. G. duodenalis cysts, microsporidia and Cryptosporidium oocysts have been detected in various ground water resources, but their role in community outbreaks and maintenance of the infection has not been fully characterised. The taxonomic classification and pathogenic potential of B. hominis are still controversial. While considered by many as yeast, fungi or protozoon, recent sequence analysis of the complete SSUrRNA gene has placed it within an informal group, the stramenopiles. This review covers recent published data on these zoonotic infections and examines their public health importance in Asian countries.