Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Shamsudin L
    Arch Physiol Biochem, 1998 Jul;106(3):253-60.
    PMID: 10099722
    In the search for better understanding on the nutritional quality of natural tropical plankton, samples were collected from shallow coastal waters facing the South China Sea during the dry monsoon (May-September) and the wet monsoon (November-April) seasons from March 1993 to July 1994. The total fatty acid content of the predominantly phytoplankton communities (25-200 microns sieve nets) varied four to fivefold with the lowest value occurring during the dry monsoon when blue-green became predominant. Saturated fatty acid content (SAFA), polyunsaturated fatty acid (PUFA) and total omega 3 (sigma omega 3) showed the same seasonal pattern as the total fatty acid with high values in October to December 1993. When species of the dinoflagellate Peridinium and Ceratium were present in considerable amount, the docosahexaenoic acid DHA content was high, especially from March to May 1993. The maximum content of eicosapentaenoic acid EPA, total omega-3 fatty acid, PUFA and sigma omega 3 in phytoplankton occurred during the pre-monsoon period (October and November 1993) when the diatoms were present in large amounts. The larger fraction sample (> 200 microns sieve nets) which consisted predominantly of zooplankton had high amounts of PUFA from September to November 1993.
    Matched MeSH terms: Phytoplankton/chemistry*
  2. Sohaimi ES, Md Amin R, Sahibu A, Mohd Akhir MF
    Data Brief, 2021 Apr;35:106893.
    PMID: 33718548 DOI: 10.1016/j.dib.2021.106893
    In this article, the abundance of phytoplankton community structure in Malacca Straits (MS); from Port Klang to Langkawi Island are reported. The datasets include data from 25 selected sampling sites that were acquired in August 2019 on board the RV Discovery's cruise expedition. These data contain details on the density of phytoplankton (cell L-1), total number of species, volume seawater filtered (in L) and the concentration factors (ml) in MS. Data presented in this article consists of 163 species, including unidentified species from 6 phyla of phytoplankton, along with the percentage of a major community group in MS.
    Matched MeSH terms: Phytoplankton
  3. Abdul-Hadi A, Mansor S, Pradhan B, Tan CK
    Environ Monit Assess, 2013 May;185(5):3977-91.
    PMID: 22930185 DOI: 10.1007/s10661-012-2843-2
    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
    Matched MeSH terms: Phytoplankton/growth & development
  4. Lim JH, Lee CW, Kudo I
    Environ Monit Assess, 2015 May;187(5):246.
    PMID: 25864082 DOI: 10.1007/s10661-015-4487-5
    Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L(-1) at Klang except on two occasions when Chl a spiked above 10 μg L(-1). In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L(-1)). From the rate measurements, μ was higher (t = 2.01, df = 43, p  0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day(-1) at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50% at Klang and lower than at Port Dickson (68%; t = 2.213, df = 36, p 
    Matched MeSH terms: Phytoplankton/growth & development*
  5. Ismail M, Phang SM, Tong SL, Brown MT
    Environ Monit Assess, 2002 Apr;75(2):145-54.
    PMID: 12002283
    Toxicity testing of four heavy metals (Cd, Cu, Mn and As) using four species of tropical marine phytoplankton, Chaetoceros calcitrans, Isochrysis galbana, Tetraselmis tetrahele and Tetraselmis sp., was carried out in multiwell plates with test volumes of 2 mL and the results compared to those of standard, large volume, shake-flasks. IC50 values (concentrations of metals estimated to inhibit 50% growth relative to the control) were determined after 96 hours based on automated O.D. readings measured in Elisa microplates by a Multiskan spectrophotometer. Good agreement was achieved between O.D. readings and cell counts indicating that this new method is a simple, economical, practical and rapid technique for toxicity testing, and provides good reproducibility of IC50 values. Results of the toxicity tests indicate that Cu was the most toxic metal (average IC50 values ranging from 0.04 to 0.37 mg L(-1)), followed by Cd (0.06-5.7 mg L(-1)), Mn (7.2-21.4 mg L(-1)) and As (33.9-319.3 mg L(-1)). Test species had different degrees of sensitivity to the metals tested, with I. galbana and C. calcitrans the most sensitive to Cu, Cd and Mn. Based on these findings it is recommended that the existing Malaysian Interim Standards for Marine Water Quality for Cd and Cu be reviewed.
    Matched MeSH terms: Phytoplankton*
  6. Haque MA, Jewel MAS, Akhi MM, Atique U, Paul AK, Iqbal S, et al.
    Environ Monit Assess, 2021 Oct 08;193(11):704.
    PMID: 34623504 DOI: 10.1007/s10661-021-09500-5
    Functional classification of phytoplankton could be a valuable tool in water quality monitoring in the eutrophic riverine ecosystems. This study is novel from the Bangladeshi perspective. In this study, phytoplankton cell density and diversity were studied with particular reference to the functional groups (FGs) approach during pre-monsoon, monsoon, and post-monsoon at four sampling stations in Karatoya River, Bangladesh. A total of 54 phytoplankton species were recorded under four classes, viz. Chlorophyceae (21 species) Cyanophyceae (16 species), Bacillariophyceae (15 species), and Euglenophyceae (2 species). A significantly higher total cell density of phytoplankton was detected during the pre-monsoon season (24.20 × 103 cells/l), while the lowest in monsoon (9.43 × 103 cells/l). The Shannon-Wiener diversity index varied significantly (F = 16.109, P = 000), with the highest value recorded during the post-monsoon season. Analysis of similarity (ANOSIM) identified significant variations among the three seasons (P phytoplankton species recorded during the study period were classified into 20 functional groups, whereas D/J/M/MP/X1 was considered the most abundant FG in the Karatoya River. FGs of the Karatoya River were influenced mainly by the nutrients (PO4-P and NO3-N) enrichments. As a novel investigation on FGs of phytoplankton in Bangladesh, this study recommends additional surveys in other rivers and floodplains to improve our understanding of phytoplankton diversity and functional groups.
    Matched MeSH terms: Phytoplankton*
  7. Er HH, Lee LK, Lim ZF, Teng ST, Leaw CP, Lim PT
    Environ Sci Pollut Res Int, 2018 Aug;25(23):22944-22962.
    PMID: 29858995 DOI: 10.1007/s11356-018-2389-0
    Effects of aquaculture activities on the environmental parameters and phytoplankton community structure were investigated in a semi-enclosed lagoon located at Semerak River, Malaysia. Elevated concentrations of phosphate and ammonia were observed at the aquaculture area and the inner lagoon. Relatively low dissolved oxygen, high total chlorophyll a, and high phytoplankton abundances but low species richness were recorded. Chaetoceros, Pseudo-nitzschia brasiliana, Blixaea quinquecornis, and Skeletonema blooms were observed, and some were associated with anoxia condition. Eutrophication level assessed by UNTRIX suggests that the water quality in the lagoon is deteriorating. Dissolved inorganic phosphorus and nitrogen at the impacted area were 15 and 12 times higher than the reference sites, respectively. Such trophic status indices could provide a useful guideline for optimal aquaculture management plan to reduce the environmental impact caused by aquaculture.
    Matched MeSH terms: Phytoplankton/physiology*
  8. Rahman MM, Fathi A, Balcombe SR, Nelson B, John A
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43935-43947.
    PMID: 33840035 DOI: 10.1007/s11356-021-13671-6
    Studies that associate environmental parameters with aquatic organisms in man-made lakes remain limited by accessibility and interest particularly in many Asian countries. With missed opportunities to monitor environmental transitions at Lake Kenyir, our knowledge of lake transition is restricted to the non-mixing shallow waters only. Triplicate monthly benthic invertebrate samples were collected concurrently with various environmental parameters at three locations (zones A-C) of Kenyir Lake, Malaysia. Our results affirmed that the northeast part of Lake Kenyir is oligotrophic. Abundance of phytoplankton, total suspended solids, phosphate, nitrite and nitrate drive the abundance of various groups of benthic invertebrates. All of these extrinsic variables (except phosphate) negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Polychaeta, Oligochaeta, Bivalvia, Gastropod, Isopoda and Copepod in all zones. Phosphate negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Oligochaeta, Bivalvia and Copepod. Its influences on the Polychaeta, Gastropod and Isopoda densities were zone-specific. Overall, seasons equally influenced the relationships between extrinsic and response variables in all zones. The results of this study are useful to evaluate the lake's environmental quality, in conservation and in similar projects involving environmental handling, monitoring and recovery.
    Matched MeSH terms: Phytoplankton*
  9. Rahman MM, Fathi A
    Environ Sci Pollut Res Int, 2022 Feb;29(9):13661-13674.
    PMID: 34590229 DOI: 10.1007/s11356-021-16502-w
    Very little work has determined the relative importance of uncontrolled environmental factors for affecting fish biology, and how these might influence gillnet catches. This study addresses this deficit for an important Southeast Asian cyprinid (Barbonymus schwanenfeldii). Fish were caught monthly for 12 months using gillnets of three different mesh sizes, each of which was deployed in duplicate at the surface of one of three randomly selected sites in Lake Kenyir, Malaysia, concurrent with determining various environmental parameters and the abundance of phytoplankton (chlorophyll-a). Results indicated that growth co-efficient of B. schwanenfeldii was positively influenced by dissolved oxygen and negatively influenced by total inorganic nitrogen, whereas an opposite result was observed in case of the hepatosomatic index of fish. Water turbidity was a limiting factor only for small fish (mean total length: 15.74±1.10 cm). B. schwanenfeldii could best be caught during the period of high phytoplankton abundance or at the location of high phytoplankton density in the water. Water temperature negatively influenced the gillnet catches of the fish. The remaining environmental factors such as water depth, pH, and phosphate had a weak and insignificant influence (P >0.05) on the biology and gillnet catches of fish. The observed results can be very useful for the ecological monitoring and conservation plans for this species in relation to climate change. Furthermore, the utility of the similar data for other species would be useful not only for regional but also for international fishery by optimizing catches considering environmental conditions.
    Matched MeSH terms: Phytoplankton
  10. Hii KS, Mohd-Din M, Luo Z, Tan SN, Lim ZF, Lee LK, et al.
    Harmful Algae, 2021 07;107:102077.
    PMID: 34456026 DOI: 10.1016/j.hal.2021.102077
    Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.
    Matched MeSH terms: Phytoplankton
  11. Niu B, Pang J, Lundholm N, Liang C, Teng ST, Zheng Q, et al.
    Harmful Algae, 2024 Mar;133:102602.
    PMID: 38485439 DOI: 10.1016/j.hal.2024.102602
    Pseudo-nitzschia is a cosmopolitan phytoplankton genus of which some species can form blooms and produce the neurotoxin domoic acid (DA). Identification of Pseudo-nitzschia is generally based on field material or strains followed by morphological and/or molecular characterization. However, this process is time-consuming and laborious, and can not obtain a relatively complete and reliable profile of the Pseudo-nitzschia community, because species with low abundance in the field or potentially unavailable for culturing may easily be overlooked. In the present study, specific ITS primer sets were designed and evaluated using in silico matching. The primer set ITS-84F/456R involving the complete ITS1 region was found optimal. Based on matching with a Pseudo-nitzschia ITS1 reference sequence database carefully-calibrated in this study, a metabarcoding approach using annotated amplicon sequence variants (ASV) was applied in the Taiwan Strait of the East China Sea during two cruises in the spring and summer of 2019. In total, 48 Pseudo-nitzschia species/phylotypes including 36 known and 12 novel were uncovered, and verified by haplotype networks, ITS2 secondary structure comparisons and divergence analyses. Correlation analyses revealed that temperature was a key factor affecting the seasonal variation of the Pseudo-nitzschia community. This study provides an overview of the Pseudo-nitzschia community in the Taiwan Strait, with new insights into the diversity. The developed metabarcoding approach may be used elsewhere as a standard reference for accurate annotation of Pseudo-nitzschia.
    Matched MeSH terms: Phytoplankton
  12. Mustaffa NIH, Latif MT, Wurl O
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299033 DOI: 10.3390/ijms22147413
    Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
    Matched MeSH terms: Phytoplankton/enzymology*
  13. Chai X, Li X, Hii KS, Zhang Q, Deng Q, Wan L, et al.
    Mar Environ Res, 2021 Jul;169:105398.
    PMID: 34171592 DOI: 10.1016/j.marenvres.2021.105398
    Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.
    Matched MeSH terms: Phytoplankton
  14. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
    Matched MeSH terms: Phytoplankton
  15. Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, et al.
    Mar Environ Res, 2022 Dec;182:105782.
    PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782
    Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
    Matched MeSH terms: Phytoplankton/genetics
  16. Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, et al.
    Mar Pollut Bull, 2024 Apr;201:116198.
    PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198
    Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
    Matched MeSH terms: Phytoplankton/genetics
  17. Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, et al.
    Nat Commun, 2023 Feb 02;14(1):564.
    PMID: 36732509 DOI: 10.1038/s41467-023-36241-5
    Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.
    Matched MeSH terms: Phytoplankton/physiology
  18. Saravi HN, Din ZB, Makhlough A
    Pak J Biol Sci, 2008 May 01;11(9):1179-93.
    PMID: 18819525
    Temporal variations and regional distributions of dissolved nutrients and their elemental ratios in the Iranian coastal waters of the Southern Caspian Sea were investigated. The data were collected in 1996-97 (Phase I, as a background data and undisturbed ecosystem) and in 2005 (Phase II, as a disturbed ecosystem) at sampling points (from 10 to 100 m depths). In addition to the two main sampling exercises, additional sample collections were carried out during the period of 1994 to 2004 as a long-term study. This study showed that the dissolved inorganic nitrogen/dissolved inorganic phosphorus (DIN/DIP) ratios in the southern Caspian Sea vary within a very narrow range (4.47 to 5.78) within the euphotic and aphotic layers and is by one order of magnitude lower than what have been reported for several other marine ecosystems. Phytoplankton growth seems to be nitrogen limited while the levels of P and Si always remain high. Factor Analysis/Principal Component Analysis (FA/PCA) of the correlation matrix showed that the nitrogen compounds are associated with the main factor accounting for 25.7-26.2% of the total variance for both the sampling periods. During Phase I, the Chrysophyta were the major group, whereas during Phase II the proportion of Chrysophyta in the total community progressively decreased, while the other groups increased.
    Matched MeSH terms: Phytoplankton*
  19. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC
    PLoS One, 2014;9(5):e97643.
    PMID: 24874081 DOI: 10.1371/journal.pone.0097643
    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.
    Matched MeSH terms: Phytoplankton/physiology*; Phytoplankton/chemistry
  20. Soon TK, Julian Ransangan
    Sains Malaysiana, 2016;45:865-877.
    Marudu Bay, north coast of Sabah is characterized with mesotrophic water body and typical environmental parameters
    throughout the year. The current study was undertaken to evaluate the effect of environmental parameters and nutrients
    in mesotrophic water on the occurrence and distribution of potentially harmful phytoplankton species. The samplings
    were conducted over a period of thirteen months, covering southwest monsoon (SWM), inter-monsoon (IM), and northeast
    monsoon (NEM), at ten stations throughout the bay. Physical parameters (temperature, salinity, pH, dissolved oxygen,
    current speed and secchi depth), biological parameters (cell densities of phytoplankton) and chemical parameters
    (phosphate, nitrate, silicate and ammonia) were examined. The results indicated at least eight potentially harmful
    phytoplankton species (Dinophysis caudata, D. miles, Ceratium furca, C. fursus, Prorocentrum micans, P. sigmoides, P.
    triestinum and Pseudo-nitzschia sp.) were detected in north coast of Sabah. However, the potentially harmful phytoplankton
    species contributed only about 1.3% of the total phytoplankton community. Under nutrient deprivation conditions, the
    potentially harmful phytoplankton species distribution was mainly influenced by the ability to utilize other nitrogen
    sources, cell mobility and toleration to low nutrients environments.
    Matched MeSH terms: Phytoplankton
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links