Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM
    PeerJ, 2024;12:e17843.
    PMID: 39247549 DOI: 10.7717/peerj.17843
    Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
    Matched MeSH terms: Proteomics/methods
  2. Ujang J, Sani AAA, Lim BH, Noordin R, Othman N
    Proteomics, 2018 12;18(23):e1700397.
    PMID: 30284757 DOI: 10.1002/pmic.201700397
    Entamoeba histolytica membrane proteins are important players toward the pathogenesis of amoebiasis, but the roles of most of the proteins are not fully understood. Since efficient protein extraction method is crucial for a successful MS analysis, three extractions methods are evaluated for the use in studying the membrane proteome of E. histolytica: Two commercial kits (ProteoExtract from Calbiochem and ProteoPrep from Sigma), and a conventional laboratory method. The results show that ProteoExtract and the conventional method gave higher protein yields compared to ProteoPrep. LC-ESI-MS/MS identifies 456, 482, and 551 membrane fraction proteins extracted using ProteoExtract, ProteoPrep, and a conventional method, respectively. In silico analysis predicts 108 (21%), 235 (45%), and 177 (34%) membrane proteins from the extracts of ProteoExtract, ProteoPrep, and the conventional method, respectively. Furthermore, analysis of the cytosolic and membrane fractions shows the highest selectivity of the membrane proteins using the ProteoPrep extraction kit. Overall, this study reports 828 E. histolytica membrane fraction proteins that include 249 predicted membrane proteins. The data are available via ProteomeXchange with identifier PXD010171.
    Matched MeSH terms: Proteomics/methods*
  3. Palasuberniam P, Tan KY, Chan YW, Blanco FB, Tan CH
    Trans R Soc Trop Med Hyg, 2023 Jun 02;117(6):428-434.
    PMID: 36611268 DOI: 10.1093/trstmh/trac125
    BACKGROUND: Philippine Cobra Antivenom (PCAV) is the only snake antivenom manufactured in the Philippines. It is used clinically to treat envenoming caused by the Philippine Spitting Cobra (Naja philippinensis). While PCAV is effective pharmacologically, it is crucial to ensure the safety profile of this biologic that is derived from animal plasma.

    METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.

    CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.

    Matched MeSH terms: Proteomics/methods
  4. Chin CF, Teoh EY, Chee MJY, Al-Obaidi JR, Rahmad N, Lawson T
    Protein J, 2019 12;38(6):704-715.
    PMID: 31552579 DOI: 10.1007/s10930-019-09868-x
    Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. 'Chokanan' and Mangifera indica cv 'Golden Phoenix'. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the 'Chokanan' variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both 'Chokanan' and 'Golden Phoenix' varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management.
    Matched MeSH terms: Proteomics/methods
  5. Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, et al.
    OMICS, 2018 12;22(12):759-769.
    PMID: 30571610 DOI: 10.1089/omi.2018.0160
    The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
    Matched MeSH terms: Proteomics/methods*
  6. Chan YW, Tan KY, Tan CH
    Toxicon, 2022 Dec;220:106942.
    PMID: 36240856 DOI: 10.1016/j.toxicon.2022.106942
    Snakebite envenoming is an important neglected tropical disease. Antivenom supply, however, remains limited in many parts of the world. This study aimed to examine the protein composition, immunoreactivity and neutralization efficacy of a new antivenom product (VINS Philippine Elapid Antivenoms, VPEAV) developed for the treatment of snakebite envenoming caused by the Philippine Cobra (Naja philippinensis), Samar Cobra (Naja samarensis) and King Cobra (Ophiophagus hannah). Size-exclusion chromatography, sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and tandem mass spectrometry showed that VPEAV consisted of F(ab)'2 (∼90% of total antivenom proteins) with minimal protein impurities. Indirect ELISA showed varying immunoreactivity of VPEAV toward the different venoms (EC50 = 4-16 μg/ml), indicating distinct venom antigenicity between the species. In mice, the neutralization potency of VPEAV against the King Cobra venom was moderate (potency, P = 2.6 mg/ml, defined as the amount of venom completely neutralized per unit volume of antivenom). The potency was significantly lower against the N. philippinensis and N. samarensis venoms (P = 0.18-0.30 mg/ml), implying a higher dose may be needed for effective neutralization of the Naja venoms. Together, the findings suggest the potential and limitation of VPEAV in neutralizing the venom toxicity of the three Philippine elapid snakes.
    Matched MeSH terms: Proteomics/methods
  7. Lee PY, Low TY
    Methods Mol Biol, 2023;2690:299-310.
    PMID: 37450156 DOI: 10.1007/978-1-0716-3327-4_25
    Affinity purification coupled to mass spectrometry (AP-MS) is a powerful method to analyze protein-protein interactions (PPIs). The AP-MS approach provides an unbiased analysis of the entire protein complex and is useful to identify indirect interactors. However, reliable protein identification from the complex AP-MS experiments requires appropriate control of false identifications and rigorous statistical analysis. Another challenge that can arise from AP-MS analysis is to distinguish bona fide interacting proteins from the non-specifically bound endogenous proteins or the "background contaminants" that co-purified by the bait experiments. In this chapter, we will first describe the protocol for performing in-solution trypsinization for the samples from the AP experiment followed by LC-MS/MS analysis. We will then detail the MaxQuant workflow for protein identification and quantification for the PPI data derived from the AP-MS experiment. Finally, we describe the CRAPome interface to process the data by filtering against contaminant lists, score the interactions and visualize the protein interaction networks.
    Matched MeSH terms: Proteomics/methods
  8. Talei D, Valdiani A, Puad MA
    Biotechnol Appl Biochem, 2013 Sep-Oct;60(5):521-6.
    PMID: 23725097 DOI: 10.1002/bab.1126
    Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues.
    Matched MeSH terms: Proteomics/methods
  9. Lau BYC, Othman A, Ramli US
    Protein J, 2018 12;37(6):473-499.
    PMID: 30367348 DOI: 10.1007/s10930-018-9802-x
    Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
    Matched MeSH terms: Proteomics/methods*
  10. Hussain H, Mustafa Kamal M, Al-Obaidi JR, Hamdin NE, Ngaini Z, Mohd-Yusuf Y
    Protein J, 2020 02;39(1):62-72.
    PMID: 31863255 DOI: 10.1007/s10930-019-09878-9
    Metroxylon sagu Rottb. or locally known as sago palm is a tropical starch crop grown for starch production in commercial plantations in Malaysia, especially in Sarawak, East Malaysia. This plant species accumulate the highest amount of edible starch compared to other starch-producing crops. However, the non-trunking phenomenon has been observed to be one of the major issues restricting the yield of sago palm starch. In this study, proteomics approach was utilised to discover differences between trunking and non-trunking proteomes in sago palm leaf tissues. Total protein from 16 years old trunking and non-trunking sago palm leaves from deep peat area were extracted with PEG fractionation extraction method and subjected to two-dimensional gel electrophoresis (2D PAGE). Differential protein spots were subjected to MALDI-ToF/ToF MS/MS. Proteomic analysis has identified 34 differentially expressed proteins between trunking and non-trunking sago samples. From these protein spots, all 19 proteins representing different enzymes and proteins have significantly increased in abundance in non-trunking sago plant when subjected to mass spectrometry. The identified proteins mostly function in metabolic pathways including photosynthesis, tricarboxylic acid cycle, glycolysis, carbon utilization and oxidative stress. The current study indicated that the several proteins identified through differentially expressed proteome contributed to physical differences in trunking and non-trunking sago palm.
    Matched MeSH terms: Proteomics/methods
  11. Acquah C, Chan YW, Pan S, Agyei D, Udenigwe CC
    J Food Biochem, 2019 01;43(1):e12765.
    PMID: 31353493 DOI: 10.1111/jfbc.12765
    The application of proteomic and peptidomic technologies for food-derived bioactive peptides is an emerging field in food sciences. These technologies include the use of separation tools coupled to a high-resolution spectrometric and bioinformatic tools for prediction, identification, sequencing, and characterization of peptides. To a large extent, one-dimensional separation technologies have been extensively used as a continuous tool under different optimized conditions for the identification and analysis of food peptides. However, most one-dimensional separation technologies are fraught with significant bottlenecks such as insufficient sensitivity and specificity limits for complex samples. To address this limitation, separation systems based on orthogonal, multidimensional principles, which allow for the coupling of more than one analytical separation tool with different operational principles, provide a higher separation power than one-dimensional separation tools. This review describes the structure-informed separation and purification of protein hydrolyzates to obtain peptides with desirable bioactivities. PRACTICAL APPLICATIONS: Application of bioactive peptides in the formulation of functional foods, nutraceuticals, and therapeutic agents have increasingly gained scholarly and industrial attention. The bioactive peptides exist originally in protein sources and are only active after hydrolysis of the parent protein. Currently, several tools can be configured in one-dimensional or multidimensional systems for the separation and purification of protein hydrolyzates. The separations are informed by the structural properties such as the molecular weight, charge, hydrophobicity or hydrophilicity, and the solubility of peptides. This review provides a concise discussion on the commonly used analytical tools, their configurations, advantages and challenges in peptide separation. Emphasis is placed on how the structural properties of peptides assist in the separation and purification processes and the concomitant effect of the separation on peptide bioactivity.
    Matched MeSH terms: Proteomics/methods
  12. Jamil NAM, Rahmad N, Rosli NHM, Al-Obaidi JR
    Electrophoresis, 2018 12;39(23):2954-2964.
    PMID: 30074628 DOI: 10.1002/elps.201800185
    Wax apple is one of the underutilized fruits that is considered a good source of fibers, vitamins, minerals as well as antioxidants. In this study, a comparative analysis of the developments of wax fruit ripening at the proteomic and metabolomic level was reported. 2D electrophoresis coupled with MALDI-TOF/TOF was used to compare the proteome profile from three developmental stages named immature, young, and mature fruits. In general, the protein expression profile and the identified proteins function were discussed for their potential roles in fruit physiological development and ripening processes. The metabolomic investigation was also performed on the same samples using quadrupole LC-MS (LC-QTOF/MS). Roles of some of the differentially expressed proteins and metabolites are discussed in relation to wax apple ripening during the development. This is the first study investigating the changes in the proteins and metabolites in wax apple at different developmental stages. The information obtained from this research will be helpful in developing biomarkers for breeders and help the plant researchers to avoid wax apple cultivation problems such as fruit cracking.
    Matched MeSH terms: Proteomics/methods*
  13. Manousopoulou A, Hamdan M, Fotopoulos M, Garay-Baquero DJ, Teng J, Garbis SD, et al.
    Proteomics Clin Appl, 2019 05;13(3):e1800153.
    PMID: 30488576 DOI: 10.1002/prca.201800153
    BACKGROUND: Endometriosis affects about 4% of women in the reproductive age and is associated with subfertility. The aim of the present study is to examine the integrated quantitative proteomic profile of eutopic endometrium and serum from women with endometriosis compared to controls in order to identify candidate disease-specific serological markers.

    METHODS: Eutopic endometrium and serum from patients with endometriosis (n = 8 for tissue and n = 4 for serum) are, respectively, compared to endometrium and serum from females without endometriosis (n = 8 for tissue and n = 4 for serum) using a shotgun quantitative proteomics method. All study participants are at the proliferative phase of their menstrual cycle.

    RESULTS: At the tissue and serum level, 1214 and 404 proteins are differentially expressed (DEPs) in eutopic endometrium and serum, respectively, of women with endometriosis versus controls. Gene ontology analysis shows that terms related to immune response/inflammation, cell adhesion/migration, and blood coagulation are significantly enriched in the DEPs of eutopic endometrium, as well as serum. Twenty-one DEPs have the same trend of differential expression in both matrices and can be further examined as potential disease- and tissue-specific serological markers of endometriosis.

    CONCLUSIONS: The present integrated proteomic profiling of eutopic endometrium and serum from women with endometriosis identify promising serological markers that can be further validated in larger cohorts for the minimally invasive diagnosis of endometriosis.

    Matched MeSH terms: Proteomics/methods*
  14. Shafie IN, Anderson TJ, Penderis J, Eckersall PD, McLaughlin M
    Vet J, 2013 Sep;197(3):836-41.
    PMID: 23820135 DOI: 10.1016/j.tvjl.2013.05.039
    Cerebrospinal fluid (CSF) is a potential source for disease-specific biomarkers that may assist in the staging and determining the prognosis of neurodegenerative conditions in animals. However, the validity of such putative biomarkers may be influenced by pre-analytical variables, including the procedures adopted to collect and store the CSF. This study assessed the effect of three handling practices on the stability of a panel of CSF proteins: clusterin (also known as apolipoprotein J), haptoglobin, cystatin C, and transthyretin (TTR). The three handling procedures for canine CSF were mimicked in the laboratory as follows: (1) storage in a refrigerator overnight (4 °C for 18 h); (2) carrying a sample in the pocket of a clinician (37 °C for 4h); and (3) mailing a sample to a remote laboratory for analysis (room temp for 48 h). The impact of these three scenarios on the concentrations of the selected proteins was assessed using Western blotting and compared to an aliquot of CSF that had been kept frozen. The level of clusterin was significantly reduced following 48 h at room temperature (P<0.05), while the concentration of the dimeric form of TTR increased following this handling procedure and also when held at 37 °C for 4h. A reducing agent prevented this increase at 37 °C. In conclusion, exposing CSF samples to various environmental conditions can significantly alter their protein content, a factor that must be considered in studies assessing potential biomarkers in canine CSF.
    Matched MeSH terms: Proteomics/methods*
  15. Husain I, Ahmad W, Ali A, Anwar L, Nuruddin SM, Ashraf K, et al.
    CNS Neurol Disord Drug Targets, 2021;20(7):613-624.
    PMID: 33530918 DOI: 10.2174/1871527320666210202121624
    A proteome is defined as a comprehensive protein set either of an organ or an organism at a given time and under specific physiological conditions. Accordingly, the study of the nervous system's proteomes is called neuroproteomics. In the neuroproteomics process, various pieces of the nervous system are "fragmented" to understand the dynamics of each given sub-proteome in a much better way. Functional proteomics addresses the organisation of proteins into complexes and the formation of organelles from these multiprotein complexes that control various physiological processes. Current functional studies of neuroproteomics mainly talk about the synapse structure and its organisation, the major building site of the neuronal communication channel. The proteomes of synaptic vesicle, presynaptic terminal, and postsynaptic density, have been examined by various proteomics techniques. The objectives of functional neuroproteomics are: to solve the proteome of single neurons or astrocytes grown in cell cultures or from the primary brain cells isolated from tissues under various conditions, to identify the set of proteins that characterize specific pathogenesis, or to determine the group of proteins making up postsynaptic or presynaptic densities. It is usual to solve a particular sub-proteome like the heat-shock response proteome or the proteome responding to inflammation. Post-translational protein modifications alter their functions and interactions. The techniques to detect synapse phosphoproteome are available. However, techniques for the analysis of ubiquitination and sumoylation are under development.
    Matched MeSH terms: Proteomics/methods*
  16. Low TY
    Proteomics, 2023 Nov;23(21-22):e2300209.
    PMID: 37986683 DOI: 10.1002/pmic.202300209
    Most proteins function by forming complexes within a dynamic interconnected network that underlies various biological mechanisms. To systematically investigate such interactomes, high-throughput techniques, including CF-MS, have been developed to capture, identify, and quantify protein-protein interactions (PPIs) on a large scale. Compared to other techniques, CF-MS allows the global identification and quantification of native protein complexes in one setting, without genetic manipulation. Furthermore, quantitative CF-MS can potentially elucidate the distribution of a protein in multiple co-elution features, informing the stoichiometries and dynamics of a target protein complex. In this issue, Youssef et al. (Proteomics 2023, 00, e2200404) combined multiplex CF-MS and a new algorithm to study the dynamics of the PPI network for Escherichia coli grown under ten different conditions. Although the results demonstrated that most proteins remained stable, the authors were able to detect disrupted interactions that were growth condition specific. Further bioinformatics analyses also revealed the biophysical properties and structural patterns that govern such a response.
    Matched MeSH terms: Proteomics/methods
  17. Tan CH, Tan KY, Tan NH
    J Proteomics, 2016 07 20;144:33-8.
    PMID: 27282922 DOI: 10.1016/j.jprot.2016.06.004
    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom.

    SIGNIFICANCE: A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the beaked sea snake (Hydrophis schistosus) and N. scutatus. However, it is surprising to note that bioCSL Sea Snake Antivenom neutralized N. scutatus venom much more effectively compared to the targeted sea snake venom by a marked difference in potency of approximately 6-fold. This phenomenon may be explained by the main difference in the proteomes of the two venoms, where H. schistosus venom is dominated by short-neurotoxins in high abundance - this is a poorly immunogenic toxin group that has been increasingly recognized in the venoms of a few cobras. Further investigations should be directed toward strategies to improve the neutralization of short-neurotoxins, in line with the envisioned production of an effective pan-regional elapid antivenom.

    Matched MeSH terms: Proteomics/methods*
  18. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
    Matched MeSH terms: Proteomics/methods*
  19. Al-Obaidi JR
    Electrophoresis, 2016 05;37(10):1257-63.
    PMID: 26891916 DOI: 10.1002/elps.201600031
    Mushrooms are considered an important food for their traditionally famous nutritional and medicinal values, although much information about their potential at the molecular level is unfortunately unknown. Edible mushrooms include fungi that are either collected wild or cultivated. Many important species are difficult to cultivate but attempts have been made with varying degrees of success, with the results showing unsatisfactory economical cultivation methods. Recently, proteomic analysis has been developed as a powerful tool to study the protein content of fungi, particularly basidiomycetes. This mini-review article highlights the contribution of proteomics platforms to the study of edible mushrooms, focusing on the molecular mechanisms involved in developmental stages. This includes extracellular and cytoplasmic effector proteins that have potential or are involved in the synthesis of anticancer, antidiabetic, antioxidant, and antibiotic, in blood pressure control, in the supply of vitamins and minerals, and in other responses to environmental changes. The contribution of different proteomics techniques including classical and more advanced techniques is also highlighted.
    Matched MeSH terms: Proteomics/methods*
  20. Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR
    Protein J, 2018 12;37(6):589-607.
    PMID: 30343346 DOI: 10.1007/s10930-018-9800-z
    Growth factors and extracellular matrix (ECM) proteins are involved in wound healing. Human dermal fibroblasts secrete wound-healing mediators in culture medium known as dermal fibroblast conditioned medium (DFCM). However, the composition and concentration of the secreted proteins differ with culture conditions and environmental factors. We cultured human skin fibroblasts in vitro using serum-free keratinocyte-specific media (EpiLife™ Medium [KM1] and defined keratinocyte serum-free medium [KM2]) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. We identified and compared their proteomic profiles using bicinchoninic acid assay (BCA), 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography MS (LC-MS/MS). DFCM-KM1 and DFCM-KM2 had higher protein concentrations than DFCM-FM but not statistically significant. MALDI-TOF/TOF MS identified the presence of fibronectin, serotransferrin, serpin and serum albumin. LC-MS/MS and bioinformatics analysis identified 59, 46 and 58 secreted proteins in DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. The most significant biological processes identified in gene ontology were cellular process, metabolic process, growth and biological regulation. STRING® analysis showed that most secretory proteins in the DFCMs were associated with biological processes (e.g. wound healing and ECM organisation), molecular function (e.g. ECM binding) and cellular component (e.g. extracellular space). ELISA confirmed the presence of fibronectin and collagen in the DFCMs. In conclusion, DFCM secretory proteins are involved in cell adhesion, attachment, proliferation and migration, which were demonstrated to have potential wound-healing effects by in vitro and in vivo studies.
    Matched MeSH terms: Proteomics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links