Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Borhani TN, Saniedanesh M, Bagheri M, Lim JS
    Water Res, 2016 07 01;98:344-53.
    PMID: 27124124 DOI: 10.1016/j.watres.2016.04.038
    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  2. Veerasamy R, Rajak H
    Turk J Pharm Sci, 2021 04 20;18(2):151-156.
    PMID: 33900700 DOI: 10.4274/tjps.galenos.2020.45556
    Objectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

    Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

    Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.

    Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

    Matched MeSH terms: Quantitative Structure-Activity Relationship
  3. Ahmed A, Abdo A, Salim N
    ScientificWorldJournal, 2012;2012:410914.
    PMID: 22623895 DOI: 10.1100/2012/410914
    Many of the similarity-based virtual screening approaches assume that molecular fragments that are not related to the biological activity carry the same weight as the important ones. This was the reason that led to the use of Bayesian networks as an alternative to existing tools for similarity-based virtual screening. In our recent work, the retrieval performance of the Bayesian inference network (BIN) was observed to improve significantly when molecular fragments were reweighted using the relevance feedback information. In this paper, a set of active reference structures were used to reweight the fragments in the reference structure. In this approach, higher weights were assigned to those fragments that occur more frequently in the set of active reference structures while others were penalized. Simulated virtual screening experiments with MDL Drug Data Report datasets showed that the proposed approach significantly improved the retrieval effectiveness of ligand-based virtual screening, especially when the active molecules being sought had a high degree of structural heterogeneity.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  4. Veligeti R, Madhu RB, Anireddy J, Pasupuleti VR, Avula VKR, Ethiraj KS, et al.
    Sci Rep, 2020 11 26;10(1):20720.
    PMID: 33244007 DOI: 10.1038/s41598-020-77590-1
    Acridone based synthetic and natural products with inherent anticancer activity advancing the research and generating a large number of structurally diversified compounds. In this sequence we have designed, synthesized a series of tetracyclic acridones with amide framework viz., 3-(alkyloyl/ aryloyl/ heteroaryloyl/ heteroaryl)-2,3-dihydropyrazino[3,2,1-de]acridin-7(1H)-ones and screened for their in vitro anti-cancer activity. The in vitro study revealed that compounds with cyclopropyl-acetyl, benzoyl, p-hydroxybenzoyl, p-(trifluoromethyl)benzoyl, p-fluorobenzoyl, m-fluorobenzoyl, picolinoyl, 6-methylpicolinoyl and 3-nicotinoyl groups are active against HT29, MDAMB231 and HEK293T cancer cell lines. The molecular docking studies performed for them against 4N5Y, HT29 and 2VWD revealed the potential ligand-protein binding interactions among the neutral aminoacid of the enzymes and carbonyl groups of the title compounds with a binding energy ranging from - 8.1394 to - 6.9915 kcal/mol. In addition, the BSA protein binding assay performed for them has confirmed their interaction with target proteins through strong binding to BSA macromolecule. The additional studies like ADMET, QSAR, bioactivity scores, drug properties and toxicity risks ascertained them as newer drug candidates. This study had added a new collection of piperazino fused acridone derivatives to the existing array of other nitrogen heterocyclic fused acridone derivatives as anticancer agents.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  5. Alharthi AM, Lee MH, Algamal ZY, Al-Fakih AM
    SAR QSAR Environ Res, 2020 Aug;31(8):571-583.
    PMID: 32628042 DOI: 10.1080/1062936X.2020.1782467
    One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties. This paper proposes an adaptive penalized logistic regression (APLR) to overcome these drawbacks. This is done by employing a ratio (BWR) of the descriptors between-groups sum of squares (BSS) to the within-groups sum of squares (WSS) for each descriptor as a weight inside the L1-norm. The proposed method was applied to one dataset that consists of a diverse series of antimicrobial agents with their respective bioactivities against Candida albicans. By experimental study, it has been shown that the proposed method (APLR) was more efficient in the selection of descriptors and classification accuracy than the other competitive methods that could be used in developing QSAR classification models. Another dataset was also successfully experienced. Therefore, it can be concluded that the APLR method had significant impact on QSAR analysis and studies.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  6. Algamal ZY, Lee MH, Al-Fakih AM, Aziz M
    SAR QSAR Environ Res, 2016 Sep;27(9):703-19.
    PMID: 27628959 DOI: 10.1080/1062936X.2016.1228696
    In high-dimensional quantitative structure-activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthermore, the local linear approximation algorithm is utilized to avoid the non-convexity of the proposed method. The potential applicability of the proposed method is tested on several benchmark data sets. Compared with other commonly used penalized methods, the proposed method can not only obtain the best predictive ability, but also provide an easily interpretable QSAR model. In addition, it is noteworthy that the results obtained in terms of applicability domain and Y-randomization test provide an efficient and a robust QSAR model. It is evident from the results that the proposed method may possibly be a promising penalized method in the field of computational chemistry research, especially when the number of molecular descriptors exceeds the number of compounds.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  7. Algamal ZY, Lee MH
    SAR QSAR Environ Res, 2017 Jan;28(1):75-90.
    PMID: 28176549 DOI: 10.1080/1062936X.2017.1278618
    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  8. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Jun;30(6):403-416.
    PMID: 31122062 DOI: 10.1080/1062936X.2019.1607899
    Time-varying binary gravitational search algorithm (TVBGSA) is proposed for predicting antidiabetic activity of 134 dipeptidyl peptidase-IV (DPP-IV) inhibitors. To improve the performance of the binary gravitational search algorithm (BGSA) method, we propose a dynamic time-varying transfer function. A new control parameter,
    μ
    , is added in the original transfer function as a time-varying variable. The TVBGSA-based model was internally and externally validated based on

    Q


    int


    2

    ,

    Q



    L
    G
    O



    2

    ,

    Q



    B
    o
    o
    t



    2

    ,


    M
    S






    E





    t
    r
    a
    i
    n





    ,

    Q



    e
    x
    t



    2

    ,


    M
    S






    E





    t
    e
    s
    t





    , Y-randomization test, and applicability domain evaluation. The validation results indicate that the proposed TVBGSA model is robust and not due to chance correlation. The descriptor selection and prediction performance of TVBGSA outperform BGSA method. TVBGSA shows higher

    Q


    int


    2

    of 0.957,

    Q



    L
    G
    O



    2

    of 0.951,

    Q



    B
    o
    o
    t



    2

    of 0.954,

    Q



    e
    x
    t



    2

    of 0.938, and lower


    M
    S






    E





    t
    r
    a
    i
    n





    and


    M
    S






    E





    t
    e
    s
    t





    compared to obtained results by BGSA, indicating the best prediction performance of the proposed TVBGSA model. The results clearly reveal that the proposed TVBGSA method is useful for constructing reliable and robust QSARs for predicting antidiabetic activity of DPP-IV inhibitors prior to designing and experimental synthesizing of new DPP-IV inhibitors.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  9. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Feb;30(2):131-143.
    PMID: 30734580 DOI: 10.1080/1062936X.2019.1568298
    An improved binary differential search (improved BDS) algorithm is proposed for QSAR classification of diverse series of antimicrobial compounds against Candida albicans inhibitors. The transfer functions is the most important component of the BDS algorithm, and converts continuous values of the donor into discrete values. In this paper, the eight types of transfer functions are investigated to verify their efficiency in improving BDS algorithm performance in QSAR classification. The performance was evaluated using three metrics: classification accuracy (CA), geometric mean of sensitivity and specificity (G-mean), and area under the curve. The Kruskal-Wallis test was also applied to show the statistical differences between the functions. Two functions, S1 and V4, show the best classification achievement, with a slightly better performance of V4 than S1. The V4 function takes the lowest iterations and selects the fewest descriptors. In addition, the V4 function yields the best CA and G-mean of 98.07% and 0.977%, respectively. The results prove that the V4 transfer function significantly improves the performance of the original BDS.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  10. Algamal ZY, Qasim MK, Lee MH, Ali HTM
    SAR QSAR Environ Res, 2020 Nov;31(11):803-814.
    PMID: 32938208 DOI: 10.1080/1062936X.2020.1818616
    High-dimensionality is one of the major problems which affect the quality of the quantitative structure-activity relationship (QSAR) modelling. Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. In this paper, four new transfer functions were adapted to improve the exploration and exploitation capability of the BGOA in QSAR modelling of influenza A viruses (H1N1). The QSAR model with these new quadratic transfer functions was internally and externally validated based on MSEtrain, Y-randomization test, MSEtest, and the applicability domain (AD). The validation results indicate that the model is robust and not due to chance correlation. In addition, the results indicate that the descriptor selection and prediction performance of the QSAR model for training dataset outperform the other S-shaped and V-shaped transfer functions. QSAR model using quadratic transfer function shows the lowest MSEtrain. For the test dataset, proposed QSAR model shows lower value of MSEtest compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed QSAR model is an efficient approach for modelling high-dimensional QSAR models and it is useful for the estimation of IC50 values of neuraminidase inhibitors that have not been experimentally tested.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  11. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M
    SAR QSAR Environ Res, 2017 Aug;28(8):691-703.
    PMID: 28976224 DOI: 10.1080/1062936X.2017.1375010
    A robust screening approach and a sparse quantitative structure-retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed modified robust sure independence screening (MR-SIS) method. Second, prediction of RIs was made using the proposed robust sparse QSRR with smoothly clipped absolute deviation (SCAD) penalty (RSQSRR). The RSQSRR model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], Y-randomization test, [Formula: see text], [Formula: see text], and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of the RSQSRR for training dataset outperform the other two used modelling methods. The RSQSRR shows the highest [Formula: see text], [Formula: see text], and [Formula: see text], and the lowest [Formula: see text]. For the test dataset, the RSQSRR shows a high external validation value ([Formula: see text]), and a low value of [Formula: see text] compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed RSQSRR is an efficient approach for modelling high dimensional QSRRs and the method is useful for the estimation of RIs of essential oils that have not been experimentally tested.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  12. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M
    SAR QSAR Environ Res, 2018 May;29(5):339-353.
    PMID: 29493376 DOI: 10.1080/1062936X.2018.1439531
    A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]). The PBridge based model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], the Y-randomization test, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of PBridge for the training dataset outperforms the other methods used. PBridge shows the highest [Formula: see text] of 0.959, [Formula: see text] of 0.953, [Formula: see text] of 0.949 and [Formula: see text] of 0.959, and the lowest [Formula: see text] and [Formula: see text]. For the test dataset, PBridge shows a higher [Formula: see text] of 0.945 and [Formula: see text] of 0.948, and a lower [Formula: see text] and [Formula: see text], indicating its better prediction performance. The results clearly reveal that the proposed PBridge is useful for constructing reliable and robust QSPRs for predicting melting points prior to synthesizing new organic compounds.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  13. Khan A, Shahab M, Nasir F, Waheed Y, Alshammari A, Mohammad A, et al.
    SAR QSAR Environ Res, 2023;34(9):689-708.
    PMID: 37675795 DOI: 10.1080/1062936X.2023.2250723
    In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  14. Edros R, Feng TW, Dong RH
    SAR QSAR Environ Res, 2023;34(6):475-500.
    PMID: 37409842 DOI: 10.1080/1062936X.2023.2230868
    Current in silico modelling techniques, such as molecular dynamics, typically focus on compounds with the highest concentration from chromatographic analyses for bioactivity screening. Consequently, they reduce the need for labour-intensive in vitro studies but limit the utilization of extensive chromatographic data and molecular diversity for compound classification. Compound permeability across the blood-brain barrier (BBB) is a key concern in central nervous system (CNS) drug development, and this limitation can be addressed by applying cheminformatics with codeless machine learning (ML). Among the four models developed in this study, the Random Forest (RF) algorithm with the most robust performance in both internal and external validation was selected for model construction, with an accuracy (ACC) of 87.5% and 86.9% and area under the curve (AUC) of 0.907 and 0.726, respectively. The RF model was deployed to classify 285 compounds detected using liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) in Kelulut honey; of which, 140 compounds were screened with 94 descriptors. Seventeen compounds were predicted to permeate the BBB, revealing their potential as drugs for treating neurodegenerative diseases. Our results highlight the importance of employing ML pattern recognition to identify compounds with neuroprotective potential from the entire pool of chromatographic data.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  15. Al-Fakih AM, Qasim MK, Algamal ZY, Alharthi AM, Zainal-Abidin MH
    SAR QSAR Environ Res, 2023 Apr;34(4):285-298.
    PMID: 37157994 DOI: 10.1080/1062936X.2023.2208374
    One of the recently developed metaheuristic algorithms, the coyote optimization algorithm (COA), has shown to perform better in a number of difficult optimization tasks. The binary form, BCOA, is used in this study as a solution to the descriptor selection issue in classifying diverse antifungal series. Z-shape transfer functions (ZTF) are evaluated to verify their efficiency in improving BCOA performance in QSAR classification based on classification accuracy (CA), the geometric mean of sensitivity and specificity (G-mean), and the area under the curve (AUC). The Kruskal-Wallis test is also applied to show the statistical differences between the functions. The efficacy of the best suggested transfer function, ZTF4, is further assessed by comparing it to the most recent binary algorithms. The results prove that ZTF, especially ZTF4, significantly improves the performance of the original BCOA. The ZTF4 function yields the best CA and G-mean of 99.03% and 0.992%, respectively. It shows the fastest convergence behaviour compared to other binary algorithms. It takes the fewest iterations to reach high classification performance and selects the fewest descriptors. In conclusion, the obtained results indicate the ability of the ZTF4-based BCOA to find the smallest subset of descriptors while maintaining the best classification accuracy performance.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  16. Alharthi AM, Kadir DH, Al-Fakih AM, Algamal ZY, Al-Thanoon NA, Qasim MK
    SAR QSAR Environ Res, 2023;34(10):831-846.
    PMID: 37885432 DOI: 10.1080/1062936X.2023.2261855
    The horse herd optimization algorithm (HOA), one of the more contemporary metaheuristic algorithms, has demonstrated superior performance in a number of challenging optimization tasks. In the present work, the descriptor selection issue is resolved by classifying different essential oil retention indices using the binary form, BHOA. Based on internal and external prediction criteria, Z-shape transfer functions (ZTF) were tested to verify their efficiency in improving BHOA performance in QSPR modelling for predicting retention indices of essential oils. The evaluation criteria involved the mean-squared error of the training and testing datasets (MSE), and leave-one-out internal and external validation (Q2). The degree of convergence of the proposed Z-shaped transfer functions was compared. In addition, K-fold cross validation with k = 5 was applied. The results show that ZTF, especially ZTF1, greatly improves the performance of the original BHOA. Comparatively speaking, ZTF, especially ZTF1, exhibits the fastest convergence behaviour of the binary algorithms. It chooses the fewest descriptors and requires the fewest iterations to achieve excellent prediction performance.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  17. Al-Mudaris ZA, Majid AS, Ji D, Al-Mudarris BA, Chen SH, Liang PH, et al.
    PLoS One, 2013;8(11):e80983.
    PMID: 24260527 DOI: 10.1371/journal.pone.0080983
    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the anticancer activity of Bn1. The present study provides a new insight of benzyl vanillin derivatives as potential anti-leukemic agent.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  18. El-Harbawi M, Samir BB, El Blidi L, Ben Ghanem O
    PLoS One, 2019;14(11):e0224807.
    PMID: 31725738 DOI: 10.1371/journal.pone.0224807
    Two novel and highly accurate hybrid models were developed for the prediction of the flammability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure compounds using a quantitative structure-property relationship approach. The two models were developed using a dataset obtained from the DIPPR Project 801 database, which comprises 1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression (MLR), logarithmic, and polynomial models were used to develop the models according to an algorithm and code written using the MATLAB software. The results indicated that the proposed models were capable of predicting LFL and UFL values with accuracies that were among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of 1.41%). These hybrid models are unique in that they were developed using a modified mathematical technique combined three conventional methods. These models afford good practicability and can be used as cost-effective alternatives to experimental measurements of LFL and UFL values for a wide range of pure compounds.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  19. Das S, Laskar MA, Sarker SD, Choudhury MD, Choudhury PR, Mitra A, et al.
    Phytochem Anal, 2017 Jul;28(4):324-331.
    PMID: 28168765 DOI: 10.1002/pca.2679
    INTRODUCTION: Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AChE) inhibitory, anti-cholinergic, anti-inflammatory, anti-microbial, anti-oxidant, anti-proliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer's disease.

    OBJECTIVE: The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease.

    METHODOLOGY: Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method.

    RESULTS: In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM.

    CONCLUSION: Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.

    Matched MeSH terms: Quantitative Structure-Activity Relationship
  20. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links