Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Isa AR, Noor M
    Med J Malaysia, 1991 Sep;46(3):235-8.
    PMID: 1839918
    Three cases of occupational exposure to radio-frequency and microwave radiation were seen at the out-patient clinic, Hospital Universiti Sains Malaysia. They presented with run-down symptoms of neck strain associated with throbbing headache, irritability, loss of appetite, fatigue, memory difficulties, and numbness of extremities. They also presented with alopecia areata which is felt to be causally linked to the radiation exposure.

    Study site: Outpatient clinic Hospital Universiti Sains Malaysia (HUSM)
    Matched MeSH terms: Radio Waves/adverse effects*
  2. Ruwaidiah Idris, Ishak Hashim
    In this work we use an analytical technique to analyse the effect of a vertical uniform magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of electrically conducting fluid subject to a uniform vertical temperature gradient in the asymptotic limit short waves. We found that in the limit of short waves, the leading order expression for the marginal curve is not affected by the magnetic field.
    Dalam makalah ini kesan medan magnet menegak seragam ke atas lengkung sut permulaan olakan mantap Benard-Marangoni dalam lapisan bendalir mengufuk berpengalir elektrik dikaji tertakluk kepada kecerunan suhu yang seragam dalam had asimptot gelombang pendek. Kami dapati medan magnet tidak memberi kesan kepada sebutan utama lengkung sut dalam had gelombang pendek.
    Matched MeSH terms: Radio Waves
  3. Keow MA, Radiman S
    Radiat Prot Dosimetry, 2006;121(2):122-7.
    PMID: 16357026
    Radiofrequency (RF) and microwave (MW) radiation exposures from the antennas of rooftop-mounted mobile telephone base stations have become a serious issue in recent years due to the rapidly evolving technologies in wireless telecommunication systems. In Malaysia, thousands of mobile telephone base stations have been erected all over the country, most of which are mounted on the rooftops. In view of public concerns, measurements of the RF/MW levels emitted by the base stations were carried out in this study. The values were compared with the exposure limits set by several organisations and countries. Measurements were performed at 200 sites around 47 mobile phone base stations. It was found that the RF/MW radiation from these base stations were well below the maximum exposure limits set by various agencies.
    Matched MeSH terms: Radio Waves/adverse effects*
  4. Azlan CA, Mohd Nasir NF, Saifizul AA, Faizul MS, Ng KH, Abdullah BJ
    Australas Phys Eng Sci Med, 2007 Dec;30(4):288-91.
    PMID: 18274069
    Percutaneous image-guided needle biopsy is typically performed in highly vascular organs or in tumours with rich macroscopic and microscopic blood supply. The main risks related to this procedure are haemorrhage and implantation of tumour cells in the needle tract after the biopsy needle is withdrawn. From numerous conducted studies, it was found that heating the needle tract using alternating current in radiofrequency (RF) range has a potential to minimize these effects. However, this solution requires the use of specially designed needles, which would make the procedure relatively expensive and complicated. Thus, we propose a simple solution by using readily available coaxial core biopsy needles connected to a radiofrequency ablation (RFA) generator. In order to do so, we have designed and developed an adapter to interface between these two devices. For evaluation purpose, we used a bovine liver as a sample tissue. The experimental procedure was done to study the effect of different parameter settings on the size of coagulation necrosis caused by the RF current heating on the subject. The delivery of the RF energy was varied by changing the values for delivered power, power delivery duration, and insertion depth. The results showed that the size of the coagulation necrosis is affected by all of the parameters tested. In general, the size of the region is enlarged with higher delivery of RF power, longer duration of power delivery, and shallower needle insertion and become relatively constant after a certain value. We also found that the solution proposed provides a low cost and practical way to minimizes unwanted post-biopsy effects.
    Matched MeSH terms: Radio Waves/therapeutic use*
  5. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R
    Clinics (Sao Paulo), 2009;64(6):561-5.
    PMID: 19578660
    INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices.

    OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality.

    MATERIALS AND METHODS: Male albino Wistar rats (10-12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested.

    RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis.

    CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.

    Matched MeSH terms: Radio Waves/adverse effects*
  6. Revadi G, Rahmat O, Shailendra S
    Med J Malaysia, 2010 Mar;65(1):80-2.
    PMID: 21265259 MyJurnal
    Salivary duct obstruction secondary to calculi is a common disorder of the submandibular gland and often manifesting as painful episodic swelling of the gland during meals. Complications may arise in unresolved obstruction leading to infections, abscess formation and a hypofunctioning gland. Treatment of this disorder has evolved from the traditional sialadenectomy to organ preserving procedures done under general or local anaesthesia. Our technique using Ellman Surgitron radiofrequency device, is another alternative technique for transoral removal of extraglandular calculi. It is a simple, quick an easy technique to learn that can be done in the office setting under local anaesthesia.
    Matched MeSH terms: Radio Waves/therapeutic use*
  7. Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, Mailankot M
    Ups. J. Med. Sci., 2010 May;115(2):91-6.
    PMID: 20095879 DOI: 10.3109/03009730903552661
    The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR) with the brain is a serious concern of our society.
    Matched MeSH terms: Radio Waves*
  8. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
    Matched MeSH terms: Radio Waves*
  9. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Radio Waves*
  10. C.G. Ching, Leonard Lu, C.I. Ang, P.K. Ooi, S.S. Ng, Z. Hassan, et al.
    Sains Malaysiana, 2013;42:1327-1332.
    The present study reports on the fabrication of porous zinc oxide by wet chemical etching. ZnO thin films were deposited via radio-frequency magnetron sputtering on p-type silicon with (111) preferred orientation. The etchants used in the present work were 0.1% and 1.0% nitric acid (HNO3) solutions. ZnO were etched at various times and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy to allow the examination of their structural and optical properties. The XRD results revealed that the intensity of ZnO(002) decreased when the thin films were etched in varying HNO3 concentrations over different periods of time. The above observation is attributed to the dissolution of the ZnO(002). The SEM images showed that the thickness of the ZnO layers decreased over the etching time, which resulted from the isotropic etching by the HNO3 solution. The PL emission intensity initially increased with increasing etching time. However, with further etching of the samples, the PL spectra showed a decreasing trend in intensity as a result of the decrease in the surface-to-volume ratio. All results lead to the conclusion that 1.0% HNO3 has the capability to change the ZnO surface significantly.
    Matched MeSH terms: Radio Waves
  11. Ali MS, AbuZaiter A, Schlosser C, Bycraft B, Takahata K
    Sensors (Basel), 2014 Jul 10;14(7):12399-409.
    PMID: 25014100 DOI: 10.3390/s140712399
    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
    Matched MeSH terms: Radio Waves
  12. Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A
    Sensors (Basel), 2014;14(12):23843-70.
    PMID: 25615728 DOI: 10.3390/s141223843
    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
    Matched MeSH terms: Radio Waves
  13. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2014;9(10):e109077.
    PMID: 25286044 DOI: 10.1371/journal.pone.0109077
    Interference resulting from Cognitive Radios (CRs) is the most important aspect of cognitive radio networks that leads to degradation in Quality of Service (QoS) in both primary and CR systems. Power control is one of the efficient techniques that can be used to reduce interference and satisfy the Signal-to-Interference Ratio (SIR) constraint among CRs. This paper proposes a new distributed power control algorithm based on game theory approach in cognitive radio networks. The proposal focuses on the channel status of cognitive radio users to improve system performance. A new cost function for SIR-based power control via a sigmoid weighting factor is introduced. The existence of Nash Equilibrium and convergence of the algorithm are also proved. The advantage of the proposed algorithm is the possibility to utilize and implement it in a distributed manner. Simulation results show considerable savings on Nash Equilibrium power compared to relevant algorithms while reduction in achieved SIR is insignificant.
    Matched MeSH terms: Radio Waves*
  14. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Radio Waves
  15. Shaddad RQ, Mohammad AB, Al-Gailani SA, Al-Hetar AM
    ScientificWorldJournal, 2014;2014:170471.
    PMID: 24772009 DOI: 10.1155/2014/170471
    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.
    Matched MeSH terms: Radio Waves
  16. Naz MY, Shukrullah S, Ghaffar A, Rehman NU
    ScientificWorldJournal, 2014;2014:279868.
    PMID: 24683326 DOI: 10.1155/2014/279868
    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.
    Matched MeSH terms: Radio Waves
  17. Ching C, Om P, Ng S, Hassan Z, Abu Hassan H, Abdullah M
    Sains Malaysiana, 2014;43:923-927.
    In this work, the structural properties of radio frequency sputtering-grown zinc oxide (ZnO) thin films on sapphire (Al203), gallium arsenide (GaAs) and n-type silicon (Si) substrates were characterized. Scanning electron microscopy was employed to study the surface morphology of the samples. X-ray diffraction (xRD) measurements were also performed to obtain the structural information of the samples. The xRD results showed that the ZnO layers grown on different substrates have similar lattice constant (c) values, which were used to calculate the strain percentages of the ZnO thin films. The surface morphologies of the ZnO thin films indicated the formation of a granular surface when ZnO is deposited on n-type Si(100) and Si( 111 ) substrates. Meanwhile, a leaf-like surface is obtained when ZnO is deposited on GaAs and Al203 substrates. The results showed that the ZnO thin film grown on n-type Si(100) has the best quality among all the samples.
    Matched MeSH terms: Radio Waves
  18. Hossain MI, Faruque MR, Islam MT
    Prog Biophys Mol Biol, 2015 Nov;119(2):103-10.
    PMID: 25863147 DOI: 10.1016/j.pbiomolbio.2015.03.008
    The aim of this paper is to investigate the effects of the distances between the human head and internal cellular device antenna on the specific absorption rate (SAR). This paper also analyzes the effects of inclination angles between user head and mobile terminal antenna on SAR values. The effects of the metal-glass casing of mobile phone on the SAR values were observed in the vicinity of the human head model. Moreover, the return losses were investigated in all cases to mark antenna performance. This analysis was performed by adopting finite-difference time-domain (FDTD) method on Computer Simulation Technology (CST) Microwave Studio. The results indicate that by increasing the distance between the user head and antenna, SAR values are decreased. But the increase in inclination angle does not reduce SAR values in all cases. Additionally, this investigation provides some useful indication for future design of low SAR mobile terminal antenna.
    Matched MeSH terms: Radio Waves
  19. Grimshaw R, Stepanyants Y, Alias A
    Proc Math Phys Eng Sci, 2016 Jan;472(2185):20150416.
    PMID: 26997887
    It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg-de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg-de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg-de Vries solitary wave.
    Matched MeSH terms: Radio Waves
  20. Poh AH, Moghavvemi M, Shafiei MM, Leong CS, Lau YL, Mahamd Adikan FR, et al.
    PLoS One, 2017;12(6):e0178766.
    PMID: 28582398 DOI: 10.1371/journal.pone.0178766
    There are many products claiming to be an electronic solution towards repelling mosquitoes. Several reviews were published in debunking these claims. However, there is a lack of a systematic study on effects of electromagnetic (EM) or more specifically, radio frequency (RF) waves against mosquitoes due to the conclusions made in those years. Therefore, we attempt to establish a fundamental study on female Aedes Aegypti (Linnaeus) mosquitoes by quantifying the collective behavior of the mosquitoes against a continuous stream of low-powered RF signals via a broadband horn antenna using image processing methods. By examining the average lateral and vertical positions of the mosquitoes versus frequency and time, the data shows negligible consistency in the reactions of the mosquitoes toward the different frequencies ranging from 10 to 20,000.00 MHz, with a step of 10 MHz. This was done by examining 33 hours of spatiotemporal data, which was divided into three sessions. All three sessions showed totally different convolutions in the positions in arbitrary units based on the raster scan of the image processing output. Several frequencies apparently showed up to 0.2-70% shift in both lateral and vertical components along the spectrum, without repeatability for all three sessions. This study contributes to the following: A pilot study for establishing the collective effects of RF against mosquitoes, open-source use, and finally a low-cost and easily adaptable platform for the study of EM effects against any insects.
    Matched MeSH terms: Radio Waves
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links