Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Ng CL, Lim TS, Choong YS
    Mol Biotechnol, 2024 Apr;66(4):568-581.
    PMID: 37742298 DOI: 10.1007/s12033-023-00885-x
    Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  2. Lee KW, Tey BT, Ho KL, Tan WS
    J Appl Microbiol, 2012 Jan;112(1):119-31.
    PMID: 21992228 DOI: 10.1111/j.1365-2672.2011.05176.x
    To display a liver-specific ligand on the hepatitis B virus core particles for cell-targeting delivery.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  3. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep, 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  4. Rothan HA, Teoh TC
    Mol Biotechnol, 2021 Mar;63(3):240-248.
    PMID: 33464543 DOI: 10.1007/s12033-021-00299-7
    The global public health has been compromised since the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in late December 2019. There are no specific antiviral drugs available to combat SARS-CoV-2 infection. Besides the rapid dissemination of SARS-CoV-2, several variants have been identified with a potential epidemiologic and pathogenic variation. This fact has forced antiviral drug development strategies to stay innovative, including new drug discovery protocols, combining drugs, and establishing new drug classes. Thus, developing novel screening methods and direct-targeting viral enzymes could be an attractive strategy to combat SARS-CoV-2 infection. In this study, we designed, optimized, and validated a cell-based assay protocol for high-throughput screening (HTS) antiviral drug inhibitors against main viral protease (3CLpro). We applied the split-GFP complementation to develop GFP-split-3CLpro HTS system. The system consists of GFP-based reporters that become fluorescent upon cleavage by SARS-CoV-2 protease 3CLpro. We generated a stable GFP-split-3CLpro HTS system valid to screen large drug libraries for inhibitors to SARS-CoV-2 main protease in the bio-safety level 2 laboratory, providing real-time antiviral activity of the tested compounds. Using this assay, we identified a new class of viral protease inhibitors derived from quinazoline compounds that worth further in vitro and in vivo validation.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  5. Baradaran A, Sieo CC, Foo HL, Illias RM, Yusoff K, Rahim RA
    Biotechnol Lett, 2013 Feb;35(2):233-8.
    PMID: 23076361 DOI: 10.1007/s10529-012-1059-4
    Fifty signal peptides of Pediococcus pentosaceus were characterized by in silico analysis and, based on the physicochemical analysis, (two potential signal peptides Spk1 and Spk3 were identified). The coding sequences of SP were amplified and fused to the gene coding for green fluorescent protein (GFP) and cloned into Lactococcus lactis pNZ8048 and pMG36e vectors, respectively. Western blot analysis indicated that the GFP proteins were secreted using both heterologous SPs. ELISA showed that the secretion efficiency of GFP using Spk1 (0.64 μg/ml) was similar to using Usp45 (0.62 μg/ml) and Spk3 (0.58 μg/ml).
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  6. Subramaniam M, Baradaran A, Rosli MI, Rosfarizan M, Khatijah Y, Raha AR
    J. Mol. Microbiol. Biotechnol., 2012;22(6):361-72.
    PMID: 23295307 DOI: 10.1159/000343921
    Cyclodextrin glucanotransferase (CGTase) is an extracellular enzyme which catalyzes the formation of cyclodextrin from starch. The production of CGTase using lactic acid bacterium is an attractive alternative and safer strategy to produce CGTase. In this study, we report the construction of genetically modified Lactococcus lactis strains harboring plasmids that secrete the Bacillus sp. G1 β-CGTase, with the aid of the signal peptides (SPs) SPK1, USP45 and native SP (NSP). Three constructed vectors, pNZ:NSP:CGT, pNZ:USP:CGT and pNZ:SPK1:CGT, were developed in this study. Each vector harbored a different SP fused to the CGTase. The formation of halo zones on starch plates indicated the production and secretion of β-CGTase by the recombinants. The expression of this enzyme is shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. A band size of ∼75 kDa corresponding to β-CGTase is identified in the intracellular and the extracellular environments of the host after medium modification. The replacement of glucose by starch in the medium was shown to induce β-CGTase production in L. lactis. Although β-CGTase production is comparatively low in NZ:SPK1:CGT, the SP SPK1 was shown to have higher secretion efficiency compared to the other SPs used in this study.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  7. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  8. Abdullah N, Chase HA
    Biotechnol Bioeng, 2005 Nov 20;92(4):501-13.
    PMID: 16080185
    Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  9. Roslan AM, Mustafa Kamil A, Chandran C, Song AA, Yusoff K, Abdul Rahim R
    Biotechnol Lett, 2020 Sep;42(9):1727-1733.
    PMID: 32335791 DOI: 10.1007/s10529-020-02894-1
    OBJECTIVE: The effect of two signal peptides, namely Usp45 and Spk1 on the secretion of xylanase in Lactococcus lactis was analysed.

    RESULTS: Xylanase was successfully expressed in Lactococcus lactis. Recombinant xylanase fused to either signal peptide Usp45 or Spk1 showed halo zone on Remazol Brilliant Blue-Xylan plates. This indicated that the xylanase was successfully secreted from the cell. The culture supernatants of strains secreting the xylanase with help of the Spk1 and Usp45 signal peptides contained 49.7 U/ml and 34.4 U/ml of xylanase activity, respectively.

    CONCLUSION: Although Usp45 is the most commonly used signal peptide when secreting heterologous proteins in Lactococcus lactis, this study shows that Spk1 isolated from Pediococcus pentosaceus was superior to Usp45 in regard to xylanase protein secretion.

    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  10. Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Abdul Rahim R, et al.
    BMC Biotechnol, 2019 05 14;19(1):27.
    PMID: 31088425 DOI: 10.1186/s12896-019-0522-x
    BACKGROUND: The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated.

    RESULTS: Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days).

    CONCLUSION: The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.

    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  11. Khoo YL, Cheah SH, Chong H
    Immunotherapy, 2017 06;9(7):567-577.
    PMID: 28595518 DOI: 10.2217/imt-2017-0016
    AIM: To develop a fully bioactive humanized antibody from the chimeric rituximab for potential clinical applications using a relatively simpler and faster logical and bioinformatics approach.

    METHODS: From bioinformatics data, mismatched mouse amino acids in variable light and heavy chain amphipathic regions were identified and substituted with those common to human antibody framework. Appropriate synthetic DNA sequences inserted into vectors were transfected into HEK293 cells to produce the humanized antibody.

    RESULTS: Humanized antibodies showed specific binding to CD20 and greater cytotoxicity to cancer WIL2-NS cell proliferation than rituximab in vitro.

    CONCLUSION: A humanized version of rituximab with potential to be developed into a biobetter for treatment of B-cell disorders has been successfully generated using a logical and bioinformatics approach.

    Matched MeSH terms: Recombinant Fusion Proteins/genetics*
  12. Chong FC, Tan WS, Biak DR, Ling TC, Tey BT
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 May 15;877(14-15):1561-7.
    PMID: 19395325 DOI: 10.1016/j.jchromb.2009.03.048
    Nucleocapsid (N) protein of Nipah virus (NiV) is a potential serological marker used in the diagnosis of NiV infections. In this study, a rapid and efficient purification system, HisTrap 6 Fast Flow packed bed column was applied to purify recombinant histidine-tagged N protein of NiV from clarified feedstock. The optimizations of binding and elution conditions of N protein of NiV onto and from Nickel Sepharose 6 Fast Flow were investigated. The optimal binding was achieved at pH 7.5, superficial velocity of 1.25 cm/min. The bound N protein was successfully recovered by a stepwise elution with different concentration of imidazole (50, 150, 300 and 500 mM). The N protein of NiV was captured and eluted from an inlet N protein concentration of 0.4 mg/ml in a scale-up immobilized metal affinity chromatography (IMAC) packed bed column of Nickel Sepharose 6 Fast Flow with the optimized condition obtained from the method scouting. The purification of histidine-tagged N protein using IMAC packed bed column has resulted a 68.3% yield and a purification factor of 7.94.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  13. Yap WB, Tey BT, Ng MY, Ong ST, Tan WS
    J Virol Methods, 2009 Sep;160(1-2):125-31.
    PMID: 19433111 DOI: 10.1016/j.jviromet.2009.04.038
    The core antigen of the hepatitis B virus (HBcAg) has been used widely as a diagnostic reagent for the identification of the viral infection. However, purification using the conventional sucrose density gradient ultracentrifugation is time consuming and costly. To overcome this, HBcAg particles displaying His-tag on their surface were constructed and produced in Escherichia coli. The recombinant His-tagged HBcAgs were purified using immobilized metal affinity chromatography. Transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) revealed that the displayed His-tag did not impair the formation of the core particles and the antigenicity of HBcAg.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  14. Sharifah NA, Zakaria Z, Chia WK
    Methods Mol Biol, 2013;952:187-96.
    PMID: 23100233 DOI: 10.1007/978-1-62703-155-4_13
    Fluorescence in situ hybridization (FISH) is increasingly gaining importance in clinical diagnostics settings. Due to the ability of the technique to detect chromosomal abnormalities in samples with low cellularity or containing a mixed population of cells even at a single-cell level, it has become more popular in cancer research and diagnosis. Here, we describe the FISH technique for detection of PAX8-PPARγ translocation in follicular thyroid neoplasms, and the optimal protocol for the detection of this fusion gene using in archival formalin-fixed paraffin-embedded (FFPE) thyroid tissue sections.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  15. Lim SH, Jahanshiri F, Jalilian FA, Rahim RA, Sekawi Z, Yusoff K
    Acta Virol., 2010;54(3):181-7.
    PMID: 20822310
    Human respiratory syncytial virus (HRSV) is a leading pathogen causing lower respiratory tract infections in infants and young children worldwide. In line with the development of an effective vaccine against HRSV, a domain of the fusion (F) glycoprotein of HRSV was produced and its immunogenicity and antigenic properties, namely the effect of deficient glycosylation was examined. A His-tagged recombinant F (rF) protein was expressed in Escherichia coli, solubilized with 8 mol/l urea, purified by the Ni-NTA affinity chromatography and used for the raising of a polyclonal antibody in rabbits. The non-glycosylated rF protein proved to be a strong immunogen that induced a polyclonal antibody that was able to recognize also the glycosylated F1 subunit of native HRSV. The other way around, a polyclonal antibody prepared against the native HRSV was able to react with the rF protein. These results indicated that glycosylation was not necessary for the F domain aa 212-574 in order to be recognized by the specific polyclonal antibody.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  16. Shafee N, AbuBakar S
    J Gen Virol, 2003 Aug;84(Pt 8):2191-2195.
    PMID: 12867651 DOI: 10.1099/vir.0.19022-0
    Apoptosis was detected in Vero cell cultures expressing transfected dengue virus type 2 (DENV-2) genes. Approximately 17.5 and 51.5 % of cells expressing NS3 serine protease and NS2B-NS3(185) serine protease precursor protein [NS2B-NS3(185)(pro)] genes, respectively, were apoptotic. The percentage of apoptotic cells was significantly higher in cell cultures expressing NS2B-NS3(185)(pro). NS2B-NS3(185)(pro) was detected as NS2B-NS3(185)(pro)-EGFP fusion protein in cytoplasmic vesicular structures in the apoptotic cells. Site-directed mutagenesis which replaced His(51) with Ala within the protease catalytic triad significantly reduced the ability of the expressed NS3 and NS2B-NS3(185)(pro) to induce apoptosis. Results from the present study showed that DENV-2-encoded NS3 serine protease induces apoptosis, which is enhanced in cells expressing its precursor, NS2B-NS3(185)(pro). These findings suggest the importance of NS2B as a cofactor to NS3 protease-induced apoptosis.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  17. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  18. Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH
    Biochim. Biophys. Acta, 1998 Apr 10;1380(2):209-22.
    PMID: 9565688
    Cardiotoxins are the most abundant toxin components of cobra venom. Although many cardiotoxins have been purified and characterized by amino acid sequencing and other pharmacological and biochemical studies, to date only five cardiotoxin cDNAs from Taiwan cobra (Naja naja atra), three cDNAs from Chinese cobra (Naja atra) and two more of uncertain origin (either Chinese or Taiwan cobra) have been reported. In this paper we show the existence of four isoforms of cardiotoxin by protein analysis and nine cDNA sequences encoding six isoforms of cardiotoxins (CTX 1-3, 4a, 4b and 5) from N. n. sputatrix by cDNA cloning. This forms the first report on the cloning and characterization of several cardiotoxin genes from a single species of a spitting cobra. The cDNAs encoding these isoforms, obtained by reverse transcription-polymerase chain reaction (RT-PCR), were subsequently expressed in Escherichia coli. The native and recombinant cardiotoxins were first characterized by Western blotting and N-terminal protein sequencing. These proteins were also found to have different levels of cytolytic activity on cultured baby hamster kidney cells. Four of the isoforms (CTX 1, 2, 4 and 5) are unique to N. n. sputatrix, with CTX 2 being the most abundant species constituting about 50% of the total cardiotoxins. The isoform CTX 3 (20% constitution) is highly homologous to the cardiotoxins of N. n. atra and N. n. naja, indicating that it may be universally present in all Naja naja subspecies. Our studies suggest that the most hydrophilic isoform (CTX 5) could have evolved first followed by the hydrophobic isoforms (CTX 1, 2, 3 and 4). We also speculate that Asiatic cobras could be the modern descendants of the African and Egyptian counterparts.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  19. Leow TC, Rahman RN, Basri M, Salleh AB
    Biosci Biotechnol Biochem, 2004 Jan;68(1):96-103.
    PMID: 14745170
    A thermostable extracellular lipase of Geobacillus sp. strain T1 was cloned in a prokaryotic system. Sequence analysis revealed an open reading frame of 1,251 bp in length which codes for a polypeptide of 416 amino acid residues. The polypeptide was composed of a signal peptide (28 amino acids) and a mature protein of 388 amino acids. Instead of Gly, Ala was substituted as the first residue of the conserved pentapeptide Gly-X-Ser-X-Gly. Successful gene expression was obtained with pBAD, pRSET, pET, and pGEX as under the control of araBAD, T7, T7 lac, and tac promoters, respectively. Among them, pGEX had a specific activity of 30.19 Umg(-1) which corresponds to 2927.15 Ug(-1) of wet cells after optimization. The recombinant lipase had an optimum temperature and pH of 65 degrees C and pH 9, respectively. It was stable up to 65 degrees C at pH 7 and active over a wide pH range (pH 6-11). This study presents a rapid cloning and overexpression, aimed at improving the enzyme yield for successful industrial application.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
  20. Teoh PG, Ooi AS, AbuBakar S, Othman RY
    J Biomed Biotechnol, 2009;2009:781712.
    PMID: 19325913 DOI: 10.1155/2009/781712
    A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links