Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  2. Chow YH, Yap YJ, Tan CP, Anuar MS, Tejo BA, Show PL, et al.
    J Biosci Bioeng, 2015 Jul;120(1):85-90.
    PMID: 25553974 DOI: 10.1016/j.jbiosc.2014.11.021
    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  3. Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A
    Colloids Surf B Biointerfaces, 2013 Oct 1;110:248-53.
    PMID: 23732801 DOI: 10.1016/j.colsurfb.2013.05.001
    Protein adsorption onto membrane surfaces is important in fields related to separation science and biomedical research. This study explored the molecular interactions between protein, bovine serum albumin (BSA), and nitrocellulose films (NC) using electrokinetic phenomena and the effects of these interactions on the streaming potential measurements for different membrane pore morphologies and pH conditions. The data were used to calculate the streaming ratios of membranes-to-proteins and to compare these values to the electrostatic or hydrophobic attachment of the protein molecules onto the NC membranes. The results showed that different pH and membrane pore morphologies contributes to different protein adsorption mechanisms. The protein adsorption was significantly reduced under conditions where the membrane and protein have like-charges due to electrostatic repulsion. At the isoelectric point (IEP) of the protein, the repulsion between the BSA and the NC membrane was at the lowest; thus, the BSA could be easily attached onto the membrane/solution interface. In this case, the protein was considered to be in a compact layer without intermolecular protein repulsions.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  4. Halim AA, Kadir HA, Tayyab S
    J. Biochem., 2008 Jul;144(1):33-8.
    PMID: 18344543 DOI: 10.1093/jb/mvn036
    Urea and guanidine hydrochloride (GdnHCl) denaturation of bovine serum albumin (BSA) were investigated using bromophenol blue (BPB) binding as a probe. Addition of BPB to BSA produced an absorption difference spectrum in the wavelength range, 525-675 nm with a minimum at 587 nm and a maximum at 619 nm. The magnitude of absorption difference (DeltaAbs.) at 619 nm decreased on increasing urea/GdnHCl concentration and followed the denaturation curve. The denaturation was found to be a two-state, single-step transition. The transitions started at 1.75 and 0.875 M and completed at 6.5 and 3.25 M with the mid point occurring around 4.0 and 1.5 M urea and GdnHCl concentrations, respectively. The value of free energy of stabilization, DeltaGDH2O as determined from urea and GdnHCl denaturation curves was found to be 4041 and 4602 cal/mol, respectively. Taken together, these results suggest that BPB binding can be used as a probe to study urea and GdnHCl denaturation of BSA.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  5. Tan MX, Agyei D, Pan S, Danquah MK
    Curr Pharm Biotechnol, 2015;16(9):816-22.
    PMID: 26119365
    BACKGROUND: Effective bimolecular adsorption of proteins onto solid matrices is characterized by in-depth understanding of the biophysical features essential to optimize the adsorption performance.

    RESULTS: The adsorption of bovine serum albumin (BSA) onto anion-exchange Q-sepharose solid particulate support was investigated in batch adsorption experiments. Adsorption kinetics and isotherms were developed as a function of key industrially relevant parameters such as polymer loading, stirring speed, buffer pH, protein concentration and the state of protein dispersion (solid/aqueous) in order to optimize binding performance and adsorption capacity. Experimental results showed that the first order rate constant is higher at higher stirring speed, higher polymer loading, and under alkaline conditions, with a corresponding increase in equilibrium adsorption capacity. Increasing the stirring speed and using aqueous dispersion protein system increased the adsorption rate, but the maximum protein adsorption was unaffected. Regardless of the stirring speed, the adsorption capacity of the polymer was 2.8 mg/ml. However, doubling the polymer loading increased the adsorption capacity to 9.4 mg/ml.

    CONCLUSIONS: The result demonstrates that there exists a minimum amount of polymer loading required to achieve maximum protein adsorption capacity under specific process conditions.

    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  6. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:540-550.
    PMID: 27524052 DOI: 10.1016/j.msec.2016.06.039
    Poly (citric acid)-grafted-MWCNT (PCA-g-MWCNT) was incorporated as nanofiller in polyethersulfone (PES) to produce hemodialysis mixed matrix membrane (MMM). Citric acid monohydrate was polymerized onto the surface of MWCNTs by polycondensation. Neat PES membrane and PES/MWCNTs MMMs were fabricated by dry-wet spinning technique. The membranes were characterized in terms of morphology, pure water flux (PWF) and bovine serum albumin (BSA) protein rejection. The grafting yield of PCA onto MWCNTs was calculated as 149.2%. The decrease of contact angle from 77.56° to 56.06° for PES/PCA-g-MWCNTs membrane indicated the increase in surface hydrophilicity, which rendered positive impacts on the PWF and BSA rejection of the membrane. The PWF increased from 15.8Lm(-2)h(-1) to 95.36Lm(-2)h(-1) upon the incorporation of PCA-g-MWCNTs due to the attachment of abundant hydrophilic groups that present on the MWCNTs, which have improved the affinity of membrane towards the water molecules. For protein rejection, the PES/PCA-g-MWCNTs MMM rejected 95.2% of BSA whereas neat PES membrane demonstrated protein rejection of 90.2%. Compared to commercial PES hemodialysis membrane, the PES/PCA-g-MWCNTs MMMs showed less flux decline behavior and better PWF recovery ratio, suggesting that the membrane antifouling performance was improved. The incorporation of PCA-g-MWCNTs enhanced the separation features and antifouling capabilities of the PES membrane for hemodialysis application.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  7. Ramakrishnan R, Gimbun J, Ramakrishnan P, Ranganathan B, Reddy SMM, Shanmugam G
    Curr Drug Deliv, 2019;16(10):913-922.
    PMID: 31663478 DOI: 10.2174/1567201816666191029122445
    BACKGROUND: This paper presents the effect of solution properties and operating parameters of polyethylene oxide (PEO) based nanofiber using a wire electrode-based needleless electrospinning.

    METHODS: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.

    RESULTS: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.

    CONCLUSION: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.

    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  8. Sristi, Fatima M, Sheikh A, Almalki WH, Talegaonkar S, Dubey SK, et al.
    J Drug Target, 2023 Jun;31(5):486-499.
    PMID: 37125741 DOI: 10.1080/1061186X.2023.2205609
    With the advancement of nanotechnology, many different forms of nanoparticles (NPs) are created, which specifically enhance anticancer drug delivery to tumour cells. Albumin bio-macromolecule is a flexible protein carrier for the delivery of drugs that is biodegradable, biocompatible, and non-toxic. As a result, it presents itself as an ideal material for developing nanoparticles for anticancer drug delivery. Toxicological investigations demonstrated that this novel drug delivery technique is safe for use in the human population. Furthermore, drug compatibility with the albumin nanoparticle is remarkable. The robust structure of the nanoparticle, high drug encapsulation, and customisable drug release make it a promising carrier option for the treatment of lung cancer. In this review, we summarise human serum albumin and bovine serum albumin in the targeted delivery of anticancer drugs to lung cancer cells.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  9. Amjad MW, Mohd Amin MC, Mahali SM, Katas H, Ismail I, Hassan MN, et al.
    PLoS One, 2014;9(8):e105234.
    PMID: 25133390 DOI: 10.1371/journal.pone.0105234
    Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100-150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  10. Wong YH, Abdul Kadir H, Tayyab S
    ScientificWorldJournal, 2013;2013:981902.
    PMID: 24222758 DOI: 10.1155/2013/981902
    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔG D (H2O) and ΔG D (25°C) in presence of honey also suggested protein stabilization.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  11. Mathavan VM, Boh BK, Tayyab S
    Indian J. Biochem. Biophys., 2009 Aug;46(4):325-31.
    PMID: 19788065
    The interaction of crythrosine B (ErB), a commonly used dye for coloring foods and drinks, with bovine scrum albumin (BSA) was investigated both in the absence and presence of bilirubin (BR) using absorption and absorption difference spectroscopy. ErB binding to BSA was reflected from a significant red shift of 11 nm in the absorption maximum of ErB (527 nm) with the change in absorbance at lamdamax. Analysis of absorption difference spectroscopic titration results of BSA with increasing concentrations of ErB3 using Benesi-Hildebrand equation gave the association constant, K as 6.9 x 10(4) M(-1). BR displacing action of ErB was revealed by a significant blue shift in the absorption maximum, accompanied by a decrease in absorbance difference at lamdamax in the difference spectrum of BR-BSA complex upon addition of increasing concentrations of ErB. This was further substantiated by fluorescence spectroscopy, as addition of increasing concentrations of ErB to BR-BSA complex caused a significant decrease in fluoresccnce at 510 nm. The results suggest that ErB binds to a site in the vicinity of BR binding site on BSA. Therefore, intake of ErB may increase the risk of hyperbilirubinemia in the healthy subjects.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  12. Gan CY, Alkarkhi AF, Easa AM
    J Biosci Bioeng, 2009 Apr;107(4):366-72.
    PMID: 19332294 DOI: 10.1016/j.jbiosc.2008.12.007
    D-optimal design was employed to optimize the mixture of cross-linking agents formulation: microbial transglutaminase (MTGase) and ribose, and the processing parameters (i.e. incubation and heating time) in the mixture in order to obtain combined-cross-linked bovine serum albumin gels that have high gel strength, pH close to neutral and yet medium in browning. Analysis of variance (ANOVA) showed that the contribution of quadratic term to the model over the linear was significant for pH and L* value, whereas linear model was significant for gel strength. Optimization study using response surface methodology (RSM) was performed to the mixture components and process variables and the optimum conditions obtained were: MTGase of 1.34-1.43 g/100 mL, ribose of 1.07-1.16 g/100 mL, incubation time of 5 h at 40 degrees C and heating time of 3 h at 90 degrees C.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  13. Lee MF, Chan ES, Tam KC, Tey BT
    J Chromatogr A, 2015 May 15;1394:71-80.
    PMID: 25836051 DOI: 10.1016/j.chroma.2015.03.034
    A thermo-responsive random copolymer, POEGMA (poly(oligoethylene glycol) methacrylate) grafted on cationized agarose adsorbent was used for size selective protein adsorption. The effects of OEGMA300 ((oligoethylene glycol) methyl ether methacrylate, Mn=300g/mol) content and temperature on the adsorption of bovine serum albumin (BSA) were evaluated. Increasing the content of OEGMA300 resulted a reduction in BSA adsorption due to the enhanced shielding effect of OEGMA300 chains. Grafting of POEGMA chains onto cationized agarose adsorbent reduced the BSA adsorption by more than 95% at 26.5°C, which is below the LCST (lower critical solution temperature) of POEGMA. The BSA adsorption capacities for adsorbents grafted with 10 and 20mol% of OEGMA300 decreased by 48% and 46% respectively at 38°C, a temperature higher than their LCSTs. The temperature-dependent adsorption of BSA on the adsorbents was attributed to changes in the polymer conformation. The thermal transition of grafted POEGMA conformation exposed the ligand when the temperature was increased. Myoglobin (Myo), which was smaller than BSA, its adsorption behavior was less dependent on the polymer conformation. The adsorption of myoglobin onto the adsorbent with and without POEGMA showed similar percentage of reduction whereas the adsorption of BSA onto the adsorbent with POEGMA decreased by 7.6 times compared to the one without POEGMA. The packed bed of POEGMA grafted adsorbent was used for flow through separation of a protein mixture consisted of virus-like particle, Hepatitis B virus-like particle (HBVLP), BSA and insulin aspart. The recovery of HBVLP in 20mol% of OEGMA300 grafted adsorbent was increased by 19% compared to ungrafted adsorbent. The flow through of BSA can be reduced by increasing the operating temperature above LCST of 20mol% of OEGMA300 while the smaller protein, insulin aspart, remained adsorbed onto the cationized surface. Hence, this thermo-responsive adsorbent has a potential for size-selective separation of protein especially for the recovery of large biomolecule.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  14. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ
    Appl Spectrosc, 2018 Feb;72(2):268-279.
    PMID: 29022355 DOI: 10.1177/0003702817739908
    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  15. Chow YH, Yap YJ, Anuar MS, Tejo BA, Ariff A, Show PL, et al.
    PMID: 23911538 DOI: 10.1016/j.jchromb.2013.06.034
    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G=AΔ[PEG]+B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450g/mol, 2000g/mol, 3350g/mol and 4000g/mol, with the tie-line length (TLL) in the range of 44-60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein-polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  16. Anggraeni VS, Lee HC, Goh PS, Sutrisna PD, Chan EWC, Wong CW
    Biofouling, 2024;40(5-6):348-365.
    PMID: 38836472 DOI: 10.1080/08927014.2024.2357309
    Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  17. Ng CH, Wang WS, Chong KV, Win YF, Neo KE, Lee HB, et al.
    Dalton Trans, 2013 Jul 28;42(28):10233-43.
    PMID: 23728518 DOI: 10.1039/c3dt50884f
    Chiral enantiomers [Cu(phen)(L-threo)(H2O)]NO3 1 and [Cu(phen)(D-threo)(H2O)]NO3 2 (threo = threoninate) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(II) complexes, viz. L- and D-[Cu(phen)(5MeOCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; 5MeOCA = 5-methyloxazolidine-4-carboxylate; x = 0-3) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-Visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. Analysis of restriction enzyme inhibition by these four complexes revealed modulation of DNA binding selectivity by the type of ligand, ligand modification and chirality. Their interaction with bovine serum albumin was investigated by FL and electronic spectroscopy. With the aid of the crystal structure of BSA, spectroscopic evidence suggested their binding at the cavity containing Trp134 with numerous Tyr residues in subdomain IA. The products were more antiproliferative than cisplatin against cancer cell lines HK-1, MCF-7, HCT116, HSC-2 and C666-1 except HL-60, and were selective towards nasopharyngeal cancer HK-1 cells over normal NP69 cells of the same organ type.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  18. Ahmad AL, Low SC, Shukor SR, Ismail A
    J Immunoassay Immunochem, 2012 Jan;33(1):48-58.
    PMID: 22181820 DOI: 10.1080/15321819.2011.591479
    This study was aimed at gaining a quantitative understanding of the effect of protein quantity and membrane pore structure on protein immobilization. The concentration of immobilized protein was measured by staining with Ponceau S and measuring its color intensity. In this study, both membrane morphology and the quantity of deposited protein significantly influenced the quantity of protein immobilization on the membrane surface. The sharpness and intensity of the red protein spots varied depending on the membrane pore structure, indicating a dependence of protein immobilization on this factor. Membranes with smaller pores resulted in a higher color density, corresponding to enhanced protein immobilization and an increased assay sensitivity level. An increased of immobilized volume has a significant jagged outline on the protein spot but, conversely, no difference in binding capacity.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry
  19. Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA, et al.
    J Mech Behav Biomed Mater, 2011 Apr;4(3):331-9.
    PMID: 21316621 DOI: 10.1016/j.jmbbm.2010.10.013
    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise β-tri-calcium phosphate (β-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
  20. Ahmad N, Amin MC, Mahali SM, Ismail I, Chuang VT
    Mol Pharm, 2014 Nov 3;11(11):4130-42.
    PMID: 25252107 DOI: 10.1021/mp5003015
    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
    Matched MeSH terms: Serum Albumin, Bovine/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links