Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Muzaffar TST, Imran Y, Iskandar MA, Zakaria A
    Med J Malaysia, 2005 Jul;60 Suppl C:26-9.
    PMID: 16381279
    Femoral interlocking nailing requires fluoroscopic assistance for insertion of the nail and distal screws. In this study, scattered radiation to the eye and hand of the operating surgeon was measured during the procedure. Thermo-luminescent dosimeter (TLD) was used to quantify the dose received by the surgeon. The mean radiation exposure time during the procedure was 3.89 minutes. The mean scattered radiation doses to the hand and eye were 0.27 mSv and 0.09 mSv per procedure respectively. These very low doses have made a surgeon very unlikely to receive more than the recommended annual dose limit set by the National Council on Radiological Protection.
    Matched MeSH terms: Thermoluminescent Dosimetry
  2. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*; Thermoluminescent Dosimetry/methods*
  3. Ramli AT, Bradley DA, Hashim S, Wagiran H
    Appl Radiat Isot, 2009 Mar;67(3):428-32.
    PMID: 18693114 DOI: 10.1016/j.apradiso.2008.06.034
    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.
    Matched MeSH terms: Thermoluminescent Dosimetry/methods*
  4. Hashim S, Al-Ahbabi S, Bradley DA, Webb M, Jeynes C, Ramli AT, et al.
    Appl Radiat Isot, 2009 Mar;67(3):423-7.
    PMID: 18693024 DOI: 10.1016/j.apradiso.2008.06.030
    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
    Matched MeSH terms: Thermoluminescent Dosimetry/methods*
  5. Norhayati Abdullah, Wong, Jeannie Hsiu Ding, Ng, Kwan Hoong, Ung, Ngie Min
    MyJurnal
    The assessment of surface dose is essential in radiotherapy to avoid deterministic effect or to
    reduce the severity of side effects from radiation treatment. In this study, the surface dose for breast
    cancer radiotherapy was measured using two types of dosimeter; Thermoluminescent Dosimeter
    (TLD) and Optically Stimulated Luminescent Dosimeter (OSLD). The study was performed on the
    left breast of female Alderson Radiation Therapy (ART) phantom. The treatment planning was
    carried out on the ART phantom to determine the homogeneity of dose distribution within the target
    organ is complied with the tolerance limits of 95% to 107% as recommended by the International
    Commission on Radiation Units and Measurements (ICRU)’s Report No. 50. From the treatment
    planning result, the phantom then was irradiated with 267 cGy dose per fraction for two beam
    fields; medial tangential and lateral tangential fields using a 6 MV photon beam produced from
    three-dimensional (3D) conformal radiotherapy. Result shows that the OSLD provides 25.7% and
    23.5% higher surface dose compared to TLD for medial tangential and lateral tangential fields,
    respectively. This condition may be due to higher effective point of measurement and angular
    dependence of the OSLD compared to TLD. As a conclusion, suitable dosimeter should be selected
    to ensure accurate estimation of surface dose could be made thus reduction of skin reaction to
    patient could be achieved.
    Matched MeSH terms: Thermoluminescent Dosimetry
  6. Radhi AM, Masbah O, Shukur MH, Shahril Y, Taiman K
    Med J Malaysia, 2006 Feb;61 Suppl A:50-2.
    PMID: 17042230
    Orthopaedic procedures especially dynamic hip screw (DHS) fixation, interlocking nailing (ILN) of the tibia and femur require fluoroscopic assistance. Frequent exposure to radiation is a major concern to members of the orthopaedic surgical team. This study was undertaken to measure shallow (skin) dose to the operating team personnel and deep (whole body) dose to the surgeon during such procedures in view to provide guidelines to the operating team members regarding the number of procedures allowable for them to perform or assist annually. Skin dose for the operating personnel and whole body dose for the operating surgeon during 25 procedures; ten cases of DHS, seven and six cases of ILN of the tibia and femur respectively, was measured using Thermoluminescent Dosimeter (TLD) chips. The shallow radiation dose for theatre personnel ranged from 0.19 mSy to 0.61 per case while the deep dose for the surgeon was 0.28, 0.55 and 0.81 mSy for seven cases of tibial ILN, ten cases of DHS and six cases of femur ILN respectively. The surgeon has the highest radiation exposure than other theatre personnel and the whole body exposure for DHS was higher than that of for ILN. However, the estimated cumulative dose was still far below the permissible annual dose limit.
    Matched MeSH terms: Thermoluminescent Dosimetry*
  7. Sabarudin A, Mustafa Z, Nassir KM, Hamid HA, Sun Z
    J Appl Clin Med Phys, 2015 Jan;16(1):319-328.
    PMID: 28297258 DOI: 10.1120/jacmp.v16i1.5135
    This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50±0.29 mSv for thoracic and 6.01±0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07±0.24 mSv and 17.30±0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18±0.48 mGy and 11.96±0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56±0.43 mGy and 33.23±0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58±0.12 mGy in the TCM protocols and 51.52±14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30±1.28 mGy and 29.99±2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT. PACS numbers: 87.57.Q-, 87.57.qp, 87.53.Bn.
    Matched MeSH terms: Thermoluminescent Dosimetry
  8. Banjade DP, Raj TA, Ng BS, Xavier S, Tajuddin AA, Shukri A
    Med Dosim, 2003;28(2):73-8.
    PMID: 12804703
    Verification of tumor dose for patients undergoing external beam radiotherapy is an important part of quality assurance programs in radiation oncology. Among the various methods available, entrance dose in vivo is one reliable method used to verify the tumor dose delivered to a patient. In this work, entrance dose measurements using LiF:Mg;Ti and LiF:Mg;Cu;P thermoluminescent dosimeters (TLDs) without buildup cap was carried out. The TLDs were calibrated at the surface of a water equivalent phantom against the maximum dose, using 6- and 10-MV photon and 9-MeV electron beams. The calibration geometry was such that the TLDs were placed on the surface of the "solid-water" phantom and a calibrated ionization chamber was positioned inside the phantom at calibration depth. The calibrated TLDs were then utilized to measure the entrance dose during the treatment of actual patients. Measurements were also carried out in the same phantom simultaneously to check the stability of the system. The dose measured in the phantom using the TLDs calibrated for entrance dose to 6-and 10-MV photon beams was found to be close to the dose determined by the treatment planning system (TPS) with discrepancies of not more than 4.1% (mean 1.3%). Consequently, the measured entrance dose during dose delivery to the actual patients with a prescribed geometry was found to be compatible with a maximum discrepancy of 5.7% (mean 2.2%) when comparison was made with the dose determined by the TPS. Likewise, the measured entrance dose for electron beams in the phantom and in actual patients using the calibrated TLDs were also found to be close, with maximum discrepancies of 3.2% (mean 2.0%) and 4.8% (mean 2.3%), respectively. Careful implementation of this technique provides vital information with an ability to confidently accept treatment algorithms derived by the TPS or to re-evaluate the parameters when necessary.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*; Thermoluminescent Dosimetry/methods*
  9. Aboud H, Wagiran H, Hussin R, Ali H, Alajerami Y, Saeed MA
    Appl Radiat Isot, 2014 Aug;90:35-9.
    PMID: 24681645 DOI: 10.1016/j.apradiso.2014.01.012
    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied.
    Matched MeSH terms: Thermoluminescent Dosimetry
  10. Rais NNM, Bradley DA, Hashim A, Isa NM, Osman ND, Ismail I, et al.
    J Radiol Prot, 2019 Sep;39(3):N8-N18.
    PMID: 31018196 DOI: 10.1088/1361-6498/ab1c16
    Novel germanium (Ge)-doped silica glass fibres tailor-made in Malaysia are fast gaining recognition as potential media for thermoluminescence (TL) dosimetry, with active research ongoing into exploitation of their various beneficial characteristics. Investigation is made herein of the capability of these media for use in diagnostic imaging dosimetry, specifically at the radiation dose levels typically obtained in conduct of Computed Tomography (CT). As a first step within such efforts, there is need to investigate the performance of the fibres using tightly defined spectra, use being made of a Philips constant potential industrial x-ray facility, Model MG165, located at the Malaysian Nuclear Agency Secondary Standards Dosimetry Lab (SSDL). Standard radiation beam qualities (termed RQT) have been established for CT, in accord with IEC 61267: 2003 and IAEA Technical Reports Series No. 457: 2007. A calibrated ionisation chamber has also been utilised, forming a component part of the SSDL equipment. The fabricated fibres used in this study are 2.3 mol% flat fibre (FF) of dimensions 643 × 356 μm2 and 2.3 mol% cylindrical fibre (CF) of 481 μm diameter, while the commercial fibre used is 4 mol% with core diameter of 50 μm. The dopant concentrations are nominal preform values. The fibres have been irradiated to doses of 20, 30 and 40 milligray (mGy) for each of the beam qualities RQT 8, RQT 9 and RQT 10. For x-rays generated at constant potential values from 100 to 150 kV, a discernible energy-dependent response is seen, comparisons being made with that of lithium fluoride (LiF) thermoluminescence dosimeters (TLD-100). TL yield versus dose has also been investigated for x-ray doses from 2 to 40 mGy, all exhibiting linearity. Compared to TLD-100, greater sensitivity is observed for the fibres.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  11. Saidatul A, Azlan C, Megat Amin M, Abdullah B, Ng Kh
    Biomed Imaging Interv J, 2010 Jan-Mar;6(1):e1.
    PMID: 21611060 MyJurnal DOI: 10.2349/biij.6.1.e2
    Computed tomography (CT) fluoroscopy is able to give real time images to a physician undertaking minimally invasive procedures such as biopsies, percutaneous drainage, and radio frequency ablation (RFA). Both operators executing the procedure and patients too, are thus at risk of radiation exposure during a CT fluoroscopy.This study focuses on the radiation exposure present during a series of radio frequency ablation (RFA) procedures, and used Gafchromic film (Type XR-QA; International Specialty Products, USA) and thermoluminescent dosimeters (TLD-100H; Bicron, USA) to measure the radiation received by patients undergoing treatment, and also operators subject to scatter radiation.The voltage was held constant at 120 kVp and the current 70mA, with 5mm thickness. The duration of irradiation was between 150-638 seconds.Ultimately, from a sample of 30 liver that have undergone RFA, the study revealed that the operator received the highest dose at the hands, which was followed by the eyes and thyroid, while secondary staff dosage was moderately uniform across all parts of the body that were measured.
    Matched MeSH terms: Thermoluminescent Dosimetry
  12. Entezam A, Khandaker MU, Amin YM, Ung NM, Bradley DA, Maah J, et al.
    PLoS One, 2016;11(5):e0153913.
    PMID: 27149115 DOI: 10.1371/journal.pone.0153913
    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.
    Matched MeSH terms: Thermoluminescent Dosimetry*
  13. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH
    Sensors (Basel), 2019 May 14;19(10).
    PMID: 31091779 DOI: 10.3390/s19102226
    Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes - including light-emitting diodes (LEDs), phototransistors-including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.
    Matched MeSH terms: Thermoluminescent Dosimetry/trends*
  14. Bohari A, Hashim S, Ghoshal SK, Mohd Mustafa SN
    Radiat Prot Dosimetry, 2019 Dec 31;186(4):462-468.
    PMID: 31329977 DOI: 10.1093/rpd/ncz051
    Long exposure to radiation from fluoroscopy-guided interventions (FGIs) can be detrimental to both patients and radiologists. The effective doses received by the interventional radiology staff after performing 230 FGIs in a year were assessed by using double dosimetry and five various algorithms. The Shapiro-Wilk test revealed normally-distributed data (p < 0.01), while the significant correlation coefficients between the effective doses ranged between 0.88 and 1.00. As for the Bland-Altman analysis, both Niklason and Boetticher algorithms strongly supported the absence of statistical significance between the estimated effective doses. This portrays that the occupational doses received by the interventional radiology staff during FGIs fall within the acceptable limit regardless of the varied algorithms applied. In short, the Niklason and Boetticher algorithms appeared to be the more interchangeable ones for effective evaluation of doses. This is in view of their strong mutual correlations and excellent agreement.
    Matched MeSH terms: Thermoluminescent Dosimetry/methods*
  15. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*; Thermoluminescent Dosimetry/methods*
  16. Nawi SN, Wahib NF, Zulkepely NN, Amin YB, Min UN, Bradley DA, et al.
    Sensors (Basel), 2015;15(8):20557-69.
    PMID: 26307987 DOI: 10.3390/s150820557
    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium.
    Matched MeSH terms: Thermoluminescent Dosimetry
  17. Bradley, Sani SFA, Shafiqah ASS, Collins SM, Hugtenburg RP, Rashid HAA, et al.
    Appl Radiat Isot, 2018 Aug;138:65-72.
    PMID: 28427834 DOI: 10.1016/j.apradiso.2017.04.019
    Using tailor-made sub-mm dimension doped-silica fibres, thermoluminescent dosimetric studies have been performed for α-emitting sources of 223RaCl2 (the basis of the Bayer Healthcare product Xofigo®). The use of 223RaCl2 in the palliative treatment of bone metastases resulting from late-stage castration-resistant prostate cancer focuses on its favourable uptake in metabolically active bone metastases. Such treatment benefits from the high linear energy transfer (LET) and associated short path length (<100µm) of the α-particles emitted by 223Ra and its decay progeny. In seeking to provide for in vitro dosimetry of the α-particles originating from the 223Ra decay series, investigation has been made of the TL yield of various forms of Ge-doped SiO2 fibres, including photonic crystal fibre (PCF) collapsed, PCF uncollapsed, flat and single-mode fibres. Irradiations of the fibres were performed at the UK National Physical Laboratory (NPL). Notable features are the considerable sensitivity of the dosimeters and an effective atomic number Zeff approaching that of bone, the glass fibres offering the added advantage of being able to be placed directly into liquid. The outcome of present research is expected to inform development of doped fibre dosimeters of versatile utility, including for applications as detailed herein.
    Matched MeSH terms: Thermoluminescent Dosimetry
  18. Rassiah P, Ng KH, DeWerd LA, Kunugi K
    Australas Phys Eng Sci Med, 2004 Mar;27(1):25-9.
    PMID: 15156705
    A thermoluminescent dosimetry (TLD) postal dose inter-comparison was carried out amongst radiotherapy centres in Malaysia. The aim of this TLD inter-comparison was to compare the uniformity involved in the measurement of absorbed dose among the participating centres. A set of 5 TLD chips placed within acrylic trays were mailed to all participating centres for irradiation to an absorbed dose to water of 2 Gy. Measurements were made for 6 MV and 60Co photon beams. Results show an agreement of +/- 5% for all but three radiotherapy centres. The ratios of the TLD readings to that of the reference centre are comparable with other national/regional dose inter-comparisons. The importance of a proper ongoing quality assurance program is essential in maintaining the consistency and uniformity of doses delivered.
    Matched MeSH terms: Thermoluminescent Dosimetry/standards*
  19. Abdulla YA, Amin YM, Khoo HB
    J Radiol Prot, 2002 Dec;22(4):417-21.
    PMID: 12546228
    Percentage depth doses for 6 and 10 MV x-ray beams from a linear accelerator were measured using approximately 1 cm long (approximately 0.3 mg) Ge-doped optical fibre as a thermoluminescence dosimeter for two field sizes, 5 x 5 and 10 x 10 cm2. The results indicate that the Ge-doped optical fibre dosimeter is in good agreement with the results from a PTW 30001 cylindrical ionisation chamber and TLD-100. For 6 MV x-ray beams we observe that the depth of maximum dose d(max) is 1.5 and 2 cm for field sizes of 5 x 5 and 10 x 10 cm2 respectively. For 10 MV d(max) is 2 cm for a field size of 5 x 5 cm2 and 2.5 cm for a 10 x 10 cm2 field.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  20. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Kadni T
    Radiat Prot Dosimetry, 2013 Jun;155(1):1-10.
    PMID: 23193136 DOI: 10.1093/rpd/ncs310
    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*; Thermoluminescent Dosimetry/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links