Displaying publications 181 - 200 of 261 in total

Abstract:
Sort:
  1. Montini Maluda MC, Jelip J, Ibrahim MY, Suleiman M, Jeffree MS, Binti Aziz AF, et al.
    Am J Trop Med Hyg, 2020 08;103(2):864-868.
    PMID: 32524958 DOI: 10.4269/ajtmh.19-0928
    Japanese encephalitis (JE) is endemic in Malaysia. Although JE vaccination is practiced in the neighboring state of Sarawak for a long time, little is known about JE in Sabah state in Borneo. As a result, informed policy formulation for JE in Sabah has not been accomplished. In the present study, we have analyzed JE cases that have been reported to the Sabah State Health Department from 2000 to 2018. A total of 92 JE cases were reported during 19 years, and three-fourths of the cases were attributed to children. The estimated mean incidence for JE cases is 0.161/100,000 population. Japanese encephalitis was predominant in Sabah during June, July, and August, peaking in July. In most cases, pigs were absent within a 400-m radius of the place of residence. We could not establish any relationship between the mapping of JE cases and the number of piggeries in each district. We could not establish a relationship between average rainfall and JE cases, either. We propose the cases reported are possibly showing the tip of an iceberg and continuous surveillance is needed, as JE is a public health challenge in Sabah.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  2. Thayan R, Khairullah NS, Ho TM
    Trop Biomed, 2004 Dec;21(2):153-6.
    PMID: 16493408
    Tick-borne encephalitis (TBE) is a viral infection of the central nervous system and is caused by tick bites, usually after travel to rural or forested areas. The disease is prevalent in Scandinavia, Western Europe, Central Europe and the former Soviet Union and East Asia including Japan. In Malaysia, so far there are no reported cases of TBE. In the present time, many illnesses have been attributed to traveling to other parts of the world. Thus it is important to carry out TBE prevalence study to determine whether the virus is present among Malaysian population. Samples (sera and CSF) from patients admitted to major MOH hospitals in Peninsular Malaysia and Sabah with a clinical diagnosis of encephalitis but is IgM negative for JE, were tested for TBEV IgM ELISA and TBEV IgG ELISA (DRG, Germany). Out of the 600 samples screened for TBEV IgG, all were non-reactive. In addition, out of the 100 samples screened for TBEV IgM, all the samples were also non-reactive. Our results indicate that currently TBE is not present in the Malaysian population. Among the reasons for this could be lack of the infection agent, absence of the suitable vector or subjects selected for the study did not fit the criteria of possible exposure to TBE infections. Hence we recommend that for any future study, the selection of subjects should include those who returned from tick-infested forested areas.
    Matched MeSH terms: Encephalitis Viruses, Tick-Borne; Encephalitis, Tick-Borne
  3. Nor Rashid N, Yusof R, Rothan HA
    Trop Biomed, 2020 Sep 01;37(3):713-721.
    PMID: 33612784 DOI: 10.47665/tb.37.3.713
    Japanese encephalitis virus (JEV), a member of the family Flaviviridae, causes severe neurological disorders in humans. JEV infections represent one of the most widely spread mosquito-borne diseases, and therefore, it has been considered as an endemic disease. An effective antiviral drug is still unavailable to treat JEV, and current drugs only provide supportive treatment to alleviate the symptoms and stabilize patients' conditions. This study was designed to evaluate the antiviral activity of the sulphated polysaccharides "Carrageenan," a linear sulphated polysaccharide that is extracted from red edible seaweeds against JEV replication in vitro. Viral inactivation, attachment, and post-infection assays were used to determine the mode of inhibition of Carrageenan. Virus titters after each application were evaluated by plaque formation assay. MTT assay was used to determine the 50% cytotoxic concentration (CC50), and ELISA-like cell-based assay and immunostaining and immunostaining techniques were used to evaluate the 50% effective concentration (EC50). This study showed that Carrageenan inhibited JEV at an EC50 of 15 µg/mL in a dose-dependent manner with CC50 more than 200 µg/mL in healthy human liver cells (WRL68). The mode of inhibition assay showed that the antiviral effects of Carrageenan are mainly due to their ability to inhibit the early stages of virus infection such as the viral attachment and the cellular entry stages. Our investigation showed that Carrageenan could be considered as a potent antiviral agent to JEV infection. Further experimental and clinical studies are needed to investigate the potential applications of Carrageenan for clinical intervention against JEV infection.
    Matched MeSH terms: Encephalitis Virus, Japanese; Encephalitis, Japanese
  4. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):614-24.
    PMID: 26276025 DOI: 10.1111/bpa.12279
    Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
    Matched MeSH terms: Encephalitis, Viral/pathology*
  5. Platt GS, Way HJ, Bowen ET, Simpson DI, Hill MN, Kamath S, et al.
    Ann Trop Med Parasitol, 1975 Mar;69(1):65-71.
    PMID: 235907
    Thirty isolations of Tembusu virus and four of Sindbis virus were obtained from approximately 280 000 mosquitoes collected between October 1968 and February 1970 in Sarawak, particularly from K. Tijirak, a Land Dyak village 19 miles South of Kuching. Twenty-two isolations of Tembusu virus and two of Sindbis virus were from Culex tritaeniorhynchus; two of Tembusu virus and two of Sindbis virus came from Culex gelidus. Tembusu virus was active throughout the year at K. Tijirak, the highest infection rates in C. tritaeniorhynchus being in January-March and May-August, when the C. tritaeniorhynchus population was declining and ageing. These results confirm that C. tritaeniorhynchus is the principal arthopod host of Tembusu virus in Sarawak. Antibody studies suggest that birds, particularly domestic fowl, are probably vertebrate maintenance hosts of Tembusu and Sindbis viruses in Sarawak.
    Matched MeSH terms: Encephalitis Virus, Japanese/isolation & purification
  6. Simpson DI, Smith CE, Marshall TF, Platt GS, Way HJ, Bowen ET, et al.
    Trans R Soc Trop Med Hyg, 1976;70(1):66-72.
    PMID: 1265821
    The possible role of pigs as arbovirus maintenance hosts and their importance as amplifier hosts was studied. Blood samples from 464 pigs of all ages collected in 1962 and 1964 were tested against 10 arboviruses. Antibodies to Japanese encephalitis and Getah viruses were particularly prevalent and their calculated monthly infection rates were 19-5% and 13-3% respectively. In 1969, 447 pigs were bled monthly throughout the year and the infection rates for Japanese encephalitis virus were calculated in pigs during the first year of life. Infection rates were not uniform throughout the year; the rate increases as the pig grew older and there was a marked seasonal increase in the infection rate in the period from November to January. This coincided with the seasonal major population peak of Culex tritaeniorhynchus following intense breeding of this mosquito prior to rice planting. It is suggested that, in Sarawak, the pig acts as a maintenance host of Japanese encephalitis in a cycle involving C. gelidus mosquitoes and also acts as an important amplifier host towards the end of the year in a cycle involving C. tritaeniorhynchus. It is further suggested that Getah virus is maintained in a similar cycle between C. tritaeniorhynchus and pigs.
    Matched MeSH terms: Encephalitis Virus, Japanese/immunology
  7. Yew MMT, Lip JQ, Ling APK
    Trop Biomed, 2021 Sep 01;38(3):435-445.
    PMID: 34608117 DOI: 10.47665/tb.38.3.086
    Ever since the first reported case series on SARS-CoV-2-induced neurological manifestation in Wuhan, China in April 2020, various studies reporting similar as well as diverse symptoms of COVID-19 infection relating to the nervous system were published. Since then, scientists started to uncover the mechanism as well as pathophysiological impacts it has on the current understanding of the disease. SARS-CoV-2 binds to the ACE2 receptor which is present in certain parts of the body which are responsible for regulating blood pressure and inflammation in a healthy system. Presence of the receptor in the nasal and oral cavity, brain, and blood allows entry of the virus into the body and cause neurological complications. The peripheral and central nervous system could also be invaded directly in the neurogenic or hematogenous pathways, or indirectly through overstimulation of the immune system by cytokines which may lead to autoimmune diseases. Other neurological implications such as hypoxia, anosmia, dysgeusia, meningitis, encephalitis, and seizures are important symptoms presented clinically in COVID-19 patients with or without the common symptoms of the disease. Further, patients with higher severity of the SARS-CoV-2 infection are also at risk of retaining some neurological complications in the long-run. Treatment of such severe hyperinflammatory conditions will also be discussed, as well as the risks they may pose to the progression of the disease. For this review, articles pertaining information on the neurological manifestation of SARS-CoV-2 infection were gathered from PubMed and Google Scholar using the search keywords "SARS-CoV-2", "COVID-19", and "neurological dysfunction". The findings of the search were filtered, and relevant information were included.
    Matched MeSH terms: Encephalitis, Viral/virology
  8. Mori D, Khanam W, Sheikh RA, Tabib SMSB, Ikebe E, Hossain MM, et al.
    Sci Rep, 2017 Nov 23;7(1):16181.
    PMID: 29170534 DOI: 10.1038/s41598-017-16474-3
    Encephalitis causes significant global morbidity and mortality. A large number of viruses cause encephalitis, and their geographic and temporal distributions vary. In many encephalitis cases, the virus cannot be detected, even after extensive testing. This is one challenge in management of the encephalitis patient. Since cytokines are pivotal in any form of inflammation and vary according to the nature of the inflammation, we hypothesized cytokine levels would allow us to discriminate between encephalitis caused by viruses and other aetiologies. This pilot study was conducted in a tertiary care hospital in Dhaka, Bangladesh. Viral detection was performed by polymerase chain reaction using patient cerebrospinal fluid. Acute phase reactants and cytokines were detected in patient serum. Of the 29 biomarkers assessed using the Wilcoxon rank-sum test, only vascular endothelial growth factor (VEGF) was significantly higher (P = 0.0015) in viral-positive compared with virus-negative encephalitis patients. The area under the curve (AUC) for VEGF was 0.82 (95% confidence interval: 0.66-0.98). Serum VEGF may discriminate between virus-positive and virus-negative encephalitis. Further study will be needed to confirm these findings.
    Matched MeSH terms: Encephalitis; Encephalitis Viruses
  9. Tambyah PA
    Singapore Med J, 1999 May;40(5):329-30.
    PMID: 10489488
    Matched MeSH terms: Encephalitis, Viral/epidemiology*
  10. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10184-10206.
    PMID: 28755145 DOI: 10.1007/s11356-017-9752-4
    The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
    Matched MeSH terms: Encephalitis, Japanese; Encephalitis, St. Louis
  11. Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126678.
    PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678
    Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
    Matched MeSH terms: Encephalitis Virus, California*
  12. Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, et al.
    Neurosci Biobehav Rev, 2018 Apr;87:192-205.
    PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005
    Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
    Matched MeSH terms: Encephalitis/complications
  13. Cline C, Bell TM, Facemire P, Zeng X, Briese T, Lipkin WI, et al.
    PLoS One, 2022;17(2):e0263834.
    PMID: 35143571 DOI: 10.1371/journal.pone.0263834
    Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×105 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.
    Matched MeSH terms: Encephalitis, Viral/pathology*
  14. Wong KT, Tan CT
    PMID: 22427144 DOI: 10.1007/82_2012_205
    The clinicopathological features of human Nipah virus and Hendra virus infections appear to be similar. The clinical manifestations may be mild, but if severe, includes acute encephalitic and pulmonary syndromes with a high mortality. The pathological features in human acute henipavirus infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis), microinfarcts and parenchymal cell infection in the central nervous system, lung, kidney and other major organs. Viral inclusions, antigens, nucleocapsids and RNA are readily demonstrated in blood vessel wall and numerous types of parenchymal cells. Relapsing henipavirus encephalitis is a rare complication reported in less than 10% of survivors of the acute infection and appears to be distinct from the acute encephalitic syndrome. Pathological evidence suggests viral recrudescence confined to the central nervous system as the cause.
    Matched MeSH terms: Encephalitis, Viral/complications; Encephalitis, Viral/mortality; Encephalitis, Viral/pathology*; Encephalitis, Viral/virology
  15. Griffiths MJ, Ooi MH, Wong SC, Mohan A, Podin Y, Perera D, et al.
    J Infect Dis, 2012 Sep 15;206(6):881-92.
    PMID: 22829643 DOI: 10.1093/infdis/jis446
    BACKGROUND: Enterovirus 71 (EV71) causes large outbreaks of hand, foot, and mouth disease (HFMD), with severe neurological complications and cardio-respiratory compromise, but the pathogenesis is poorly understood.

    METHODS: We measured levels of 30 chemokines and cytokines in serum and cerebrospinal fluid (CSF) samples from Malaysian children hospitalized with EV71 infection (n = 88), comprising uncomplicated HFMD (n = 47), meningitis (n = 8), acute flaccid paralysis (n = 1), encephalitis (n = 21), and encephalitis with cardiorespiratory compromise (n = 11). Four of the latter patients died.

    RESULTS: Both pro-inflammatory and anti-inflammatory mediator levels were elevated, with different patterns of mediator abundance in the CSF and vascular compartments. Serum concentrations of interleukin 1β (IL-1β), interleukin 1 receptor antagonist (IL-1Ra), and granulocyte colony-stimulating factor (G-CSF) were raised significantly in patients who developed cardio-respiratory compromise (P = .013, P = .004, and P < .001, respectively). Serum IL-1Ra and G-CSF levels were also significantly elevated in patients who died, with a serum G-CSF to interleukin 5 ratio of >100 at admission being the most accurate prognostic marker for death (P < .001; accuracy, 85.5%; sensitivity, 100%; specificity, 84.7%).

    CONCLUSIONS: Given that IL-1β has a negative inotropic action on the heart, and that both its natural antagonist, IL-1Ra, and G-CSF are being assessed as treatments for acute cardiac impairment, the findings suggest we have identified functional markers of EV71-related cardiac dysfunction and potential treatment options.

    Matched MeSH terms: Encephalitis, Viral/blood; Encephalitis, Viral/cerebrospinal fluid; Encephalitis, Viral/etiology*; Encephalitis, Viral/epidemiology
  16. Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al.
    J R Soc Interface, 2012 Jan 7;9(66):89-101.
    PMID: 21632614 DOI: 10.1098/rsif.2011.0223
    Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.
    Matched MeSH terms: Encephalitis, Viral/epidemiology*; Encephalitis, Viral/transmission
  17. Maisner A, Neufeld J, Weingartl H
    Thromb. Haemost., 2009 Dec;102(6):1014-23.
    PMID: 19967130 DOI: 10.1160/TH09-05-0310
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.
    Matched MeSH terms: Encephalitis, Viral/etiology; Encephalitis, Viral/virology
  18. Lum LC, Lam SK, Choy YS, George R, Harun F
    Am J Trop Med Hyg, 1996 Mar;54(3):256-9.
    PMID: 8600761 DOI: 10.4269/ajtmh.1996.54.256
    Involvement of the central nervous system in dengue fever and dengue hemorrhagic fever has always been thought to be secondary to vasculitis with resultant fluid extravasation, cerebral edema, hypoperfusion, hyponatremia, liver failure, and/or renal failure. Thus, the condition has been referred to as dengue encephalopathy. Encephalitis or direct involvement of the brain by the virus was thought to be unlikely. This paper reports on six children who were seen over a period of two years presenting on the second or third day of illness with dengue encephalitis. The diagnosis was based upon a clinical picture of encephalitis and confirmed by cerebrospinal fluid (CSF) microscopy and electroencephalography changes. All six cases were confirmed dengue infections. Dengue 3 virus was isolated from the CSF of four cases and in one case, dengue 2 was detected by the polymerase chain reaction in both the CSF and blood. In the sixth case, virologic evidence was negative but dengue immunoglobulin M was detected in the CSF and blood. Since the onset of encephalitis appears early in the course of illness coinciding with the viremic phase, we postulate that the virus crosses the blood-brain barrier and directly invades the brain causing encephalitis. This study provides strong evidence that dengue 2 and 3 viruses have neurovirulent properties and behave similarly to other members of the Flaviviridae.
    Matched MeSH terms: Encephalitis, Viral/cerebrospinal fluid; Encephalitis, Viral/virology*
  19. Nissapatorn V, Lee C, Quek KF, Abdullah KA
    Jpn J Infect Dis, 2003 Oct-Dec;56(5-6):187-92.
    PMID: 14695428
    We retrospectively reviewed 419 HIV/AIDS patients in Hospital Kuala Lumpur from 1994 to 2001. In the male group, the age range was 20-74, with a mean age 37 years, while in the female group it was 17-63, with a mean age of 33 years. With regard to age group, it was found that the preponderant age group was 25-34 years. The majority of male subjects were Chinese (52.5%), single (56.3%), and unemployed (55.1%), whereas the females were Malay (42.3%), married (79.5%), and non-laborer (64.1%). Also, both groups resided in Kuala Lumpur and had heterosexual contact as the leading cause of HIV transmission. More than half of the patients had CD4 cell counts of <200 cells/cumm. We found that the acquisition of HIV infection via intravenous drug use (IDU) was directly related to the incidence of tuberculosis infection (P < 0.05). Further analysis showed HIV-related tuberculosis with IDU was also dependently correlated with occupational status (unemployed) (P < 0.05). The four main AIDS-defining diseases include tuberculosis (48%), Pneumocystis carinii pneumonia (13%), toxoplasmic encephalitis (11%), and cryptococcal meningitis (7%); in addition, 53% of these patients were found to have CD4 cell counts of less than 200 cells/cumm at the time of diagnosis.
    Matched MeSH terms: Encephalitis/epidemiology; Encephalitis/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links