MATERIALS AND METHODS: The inhibitory effects of hexane (LHXN), dichloromethane (LDCM), ethyl acetate (LEA) and methanol (LMEOH) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits.
RESULTS: Polar extracts of PS leaves (LEA and LMEOH) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with LEA and LMEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins.
CONCLUSIONS: The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau hyperphosphorylation through their anti-inflammatory actions and could be a potential therapeutic agent for Alzheimer's disease.
AIM OF THE STUDY: The aim of the present study is to investigate the antimelanogenesis effect of Sargassum polycystum extracts by cell-free mushroom tyrosinase assay followed by cell viability assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells.
MATERIALS AND METHODS: Sargassum polycystum was extracted with 95% ethanol and further fractionated with hexane, ethyl acetate and water. The ethanolic crude extract and its fractionated extracts were tested for their potential to act as antimelanogenesis or skin-whitening agents by their abilities to inhibit tyrosinase activity in the cell-free mushroom tyrosinase assay and cellular tyrosinase derived from melanin-forming B16F10 murine melanoma cells. The tyrosinase inhibitory activity was correlated to the inhibition of melanin production in α-MSH-stimulated and unstimulated B16F10 cells.
RESULTS: Sargassum polycystum ethanolic extract and its fractions had little or no inhibitory effect on mushroom tyrosinase activity. However, when tested on cellular tyrosinase, the ethanolic extract and its non-polar fraction, hexane fraction (SPHF), showed significant inhibition of cellular tyrosinase activity. In parallel to its cellular tyrosinase inhibitory activity, SPHF was also able to inhibit basal and α-MSH-stimulated melanin production in B16F10 cells.
CONCLUSIONS: Our findings showed that (i) cellular tyrosinase assay is more reliable than mushroom tyrosinase assay in the initial testing of potential antimelanogenesis agents and, (ii) SPHF inhibited melanogenesis by inhibiting cellular tyrosinase activity. SPHF may be useful for treating hyperpigmentation and as a skin-whitening agent in cosmetics industry.
METHODOLOGY: Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method.
RESULTS: The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1.
CONCLUSION: Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.
OBJECTIVE: The present study evaluated the effects of extracts of Amorphophallus paeoniifolius tubers on acetic acid-induced ulcerative colitis (UC) in rats.
MATERIALS AND METHODS: Wistar rats were orally administered methanol extract (APME) or aqueous extract (APAE) (250 and 500 mg/kg) or standard drug, prednisolone (PRDS) (4 mg/kg) for 7 days. On 6th day of treatment, UC was induced by transrectal instillation of 4% acetic acid (AA) and after 48 h colitis was assessed by measuring colitis parameters, biochemical estimations and histology of colon.
RESULTS: APME or APAE pretreatment significantly (p
AIM: The present study evaluated the effect of methanolic and aqueous extract of Amorphophallus paeoniifolius tuber on croton oil induced hemorrhoids in rats.
MATERIALS AND METHODS: The methanolic extract was standardized with the major phenolic compound, betulinic acid, by HPLC. The hemorrhoids were induced by applying 6% croton oil preparation in the ano-rectal region. Rats were orally administered methanolic and aqueous extract at doses of 250 and 500mg/kg, each for 7 days. Pilex (200mg/kg) was used as reference anti-hemorrhoidal drug. Hemorrhoids were assessed on eighth day by measuring hemorrhoidal and biochemical parameters along with histology of ano-rectal tissue.
RESULTS: Croton oil application caused induction of hemorrhoids as indicated by significant (p<0.001) increase in plasma exudation of Evans blue in ano-rectal tissue, macroscopic severity score and ano-rectal coefficient as compared to normal rats. It significantly (p<0.001) elevated lactate dehydrogenase and cytokines (TNF-α and IL-6) levels in serum and increased myeloperoxidase activity and lipid peroxidation in ano-rectal tissue along with marked histological damage as compared to normal rats. Treatment with tuber extracts and pilex significantly (p<0.05-p<0.001) ameliorated Evans blue exudation, hemorrhoidal parameters and other biochemical parameters with attenuation of tissue damage compared to hemorrhoid control rats. The results indicate that tuber extracts exhibited curative action on hemorrhoids. The aqueous extract showed more pronounced effect than methanolic extract. The effects may be attributed to anti-inflammatory and antioxidant properties.
CONCLUSION: Results indicate that tuber of Amorphophallus paeoniifolius exhibited curative action on hemorrhoids through anti-inflammatory and antioxidant properties. The study validates the ethnomedicinal use of tuber in hemorrhoids and implicates its therapeutic potential as an anti-hemorrhoidal agent.
OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.
MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.
RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.
DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.