METHODS: : Nulliparas with uncomplicated PROM at term, a Bishop score less than or equal to 6, and who required labor induction were recruited for a double-blind randomized trial. Participants were randomly assigned to 3-mg dinoprostone pessary and oxytocin infusion or placebo and oxytocin infusion. A cardiotocogram was performed before induction and maintained to delivery. Dinoprostone pessary or placebo was placed in the posterior vaginal fornix. Oxytocin intravenous infusion was commenced at 2 milliunits/min and doubled every 30 minutes to a maximum of 32 milliunits/min. Oxytocin infusion rate was titrated to achieve four contractions every 10 minutes. Primary outcomes were vaginal delivery within 12 hours and maternal satisfaction with the birth process using a visual analog scale (VAS) from 0 to 10 (higher score, greater satisfaction).
RESULTS: : One hundred fourteen women were available for analysis. Vaginal delivery rates within 12 hours were 25 of 57 (43.9%) for concurrent treatment compared with 27/57 (47.4%) (relative risk 0.9, 95% confidence interval 0.6-1.4, P=.85) for oxytocin only; median VAS was 8 (interquartile range [IQR] 2) compared with 8 (IQR 2), P=.38. Uterine hyperstimulation was 14% compared with 5.3%, P=.20; overall vaginal delivery rates were 59.6% compared with 64.9%, P=.70; and induction to vaginal delivery interval 9.7 hours compared with 9.4 hours P=.75 for concurrent treatment compared with oxytocin, respectively. There was no significant difference for any other outcome.
CONCLUSION: : Concurrent vaginal dinoprostone and intravenous oxytocin for labor induction of term PROM did not expedite delivery or improve patient satisfaction.
CLINICAL TRIAL REGISTRATION: : Current Controlled Trials, www.controlled-trials.com, ISRCTN74376345
LEVEL OF EVIDENCE: : I.
METHODS: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.
RESULTS: Addition of glycerol significantly influenced the barrier and mechanical properties of the films. Water absorption capacity was in the range of 80%-160%, whereas water vapor transmission rate varied from 1,180 to 1,618 g/m2 per day. Both properties increased with increasing glycerol concentration. Tensile strength decreased while elongation at break increased with the addition of glycerol. O-C films were found to be noncytotoxic to human fibroblast cultures and histological examination proved that films are biocompatible.
CONCLUSION: These results indicate that the membrane film from O-C has potential application as a wound-dressing material.