Patients and Methods: A total of 253 participants aged 60 years and above participated in this cross-sectional study. The participants were subjected to pure tone audiometric assessment. The hearing threshold was calculated for the better ear and classified into pure-tone average (PTA) for the octave frequencies from 0.5 to 4 kHz and high-frequency pure-tone average (HFA) for the octave from 2 to 8kHz. Then, the risk factors associated with PTA hearing loss (HL) and HFAHL were identified by using multivariate logistic regression analysis.
Results: The prevalence of ARHL based on PTA and HFA among the community-dwelling older adults was 75.5% and 83.0%, respectively. Following multifactorial adjustments, being older (OR: 1.239; 95% CI: 1.062-1.445), having higher waist circumference (OR: 1.158; 95% CI: 1.015-1.322), lower intake of niacin (OR: 0.909; 95% CI: 0.831-0.988) and potassium (OR: 0.998; 95% CI: 0.996-1.000), and scoring lower in RAVLT T5 (OR: 0.905; 95% CI: 0.838-0.978) were identified as the risk factors of PTAHL. Meanwhile, being older (OR: 1.117; 95% CI: 1.003-1.244), higher intake of carbohydrate (OR: 1.018; 95% CI: 1.006-1.030), lower intake of potassium (OR: 0.998; 95% CI: 0.997-0.999), and lower scores on the RAVLT T5 (OR: 0.922; 95% CI: 0.874-0.973) were associated with increased risk of having HFAHL.
Conclusion: Increasing age, having higher waist circumference, lower intake of niacin and potassium, higher intake of carbohydrates and having lower RAVLT T5 score were associated with increased risk of ARHL. Modifying these risk factors may be beneficial in preventive and management strategies of ARHL among older persons.
METHODS: In this prospective cohort study, a total of 400 participants aged 60 years and above were successfully followed up at 5 years. Participants' socio-demographic, medical history, psycho-social, physical, cognitive and dietary intake information was obtained. Cognitive frailty was defined as comorbid physical frailty (> 1 Fried criteria) and mild cognitive impairment (Petersen criteria). Univariate analysis was performed for all variables, followed by hierarchical binary logistic regression (BLR) analysis to identify the ability of CF in predicting the incidence of falls, injuries, and disability. The significant value was set at p
PATIENTS AND METHODS: The available data related to cognitive frailty among a sub-sample of older adults aged 60 years and above (n=815) from two states in Malaysia were analysed. In the LRGS-TUA study, a comprehensive interview-based questionnaire was administered to obtain the socio-demographic information of the participants, followed by assessments to examine the cognitive function, functional status, dietary intake, lifestyle, psychosocial status and biomarkers associated with cognitive frailty. The factors associated with cognitive frailty were assessed using a bivariate logistic regression (BLR).
RESULTS: The majority of the older adults were categorized as robust (68.4%), followed by cognitively pre-frail (37.4%) and cognitively frail (2.2%). The data on the cognitively frail and pre-frail groups were combined for comparison with the robust group. A hierarchical BLR indicated that advancing age (OR=1.04, 95% CI:1.01-1.08, p<0.05) and depression (OR=1.49, 95% CI:1.34-1.65, p<0.001) scored lower on the Activity of Daily Living (ADL) scale (OR=0.98, 95% CI:0.96-0.99, p<0.05), while low social support (OR=0.98, 95% CI:0.97-0.99, p<0.05) and low niacin intake (OR=0.94, 95% CI:0.89-0.99, p<0.05) were found to be significant factors for cognitive frailty. Higher oxidative stress (MDA) and lower telomerase activity were also associated with cognitive frailty (p<0.05).
CONCLUSION: Older age, a lower niacin intake, lack of social support, depression and lower functional status were identified as significant factors associated with cognitive frailty among older Malaysian adults. MDA and telomerase activity can be used as potential biomarkers for the identification of cognitive frailty.
METHODS AND ANALYSIS: This 12-week randomised double-blind, placebo-controlled, parallel-group study aims to evaluate the efficacy of the standardised water extract of EL known as Physta in increasing the quality of life of perimenopausal and postmenopausal women. The study involves 150 women aged 40-55 years who score more than 61 on the Menopause-Specific Quality of Life (MENQOL) assessment. These participants will be randomised into three groups, receiving Physta at either 50 mg or 100 mg or a placebo. The outcomes measures include mood state, quality of life, fatigue, sleep quality, sexual function and pain score assessed using Profile of Mood State, MENQOL, Chalder Fatigue Scale, Pittsburgh Sleep Quality Index, Female Sexual Function Index and the Brief Pain Inventory questionnaires, respectively. The secondary outcome of the study includes full blood analysis, urine analysis, female reproductive hormone profiling, inflammatory and oxidative stress biomarkers analysis.
ETHICS AND DISSEMINATION: The research protocol of the study was reviewed and approved by the Research Ethics Committee of Universiti Kebangsaan Malaysia (UKM/PPI/111/8/JEP-2021-898). The findings will be disseminated to participants, healthcare professionals and researchers via conference presentations and peer-reviewed publications.
TRIAL REGISTRATION NUMBER: ACTRN12622001341718.
LEARNING POINTS: Comprehensive hormonal and radiological investigations are important in the management of a young patient with primary amenorrhoea. Coexistence pathology of two separate pathologies should be considered in patient presenting with primary amenorrhoea. Early diagnosis of MRKH or any disorders of sex development should be treated early, providing pharmacological, surgical, psychological and emotional support to the patient and reducing risk of associated complications. Abnormal pituitary hormones, particularly panhypopituitarism, would impose greater impact not only psychologically but also metabolically leading to cardiovascular, morbidity and mortality risks in this patient if not treated early. A multidisciplinary approach is necessary for patients presenting with MRKH to ensure appropriate treatments and follow-up across the lifespan of the patient.
OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.
SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.
DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.
MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.
AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.
MATERIALS AND METHODS: This was an investigator-initiated, single-center, randomized, controlled, clinical trial in patients with T2DM and DKD, comparing 12-weeks of low carbohydrate diet (<20g daily intake) versus standard low protein (0.8g/kg/day) and low salt diet. Patients in the VLCBD group underwent 2-weekly monitoring including their 3-day food diaries. In addition, Dual-energy x-ray absorptiometry (DEXA) was performed to estimate body fat percentages.
RESULTS: The study population (n = 30) had a median age of 57 years old and a BMI of 30.68kg/m2. Both groups showed similar total calorie intake, i.e. 739.33 (IQR288.48) vs 789.92 (IQR522.4) kcal, by the end of the study. The VLCBD group showed significantly lower daily carbohydrate intake 27 (IQR25) g vs 89.33 (IQR77.4) g, p<0.001, significantly higher protein intake per day 44.08 (IQR21.98) g vs 29.63 (IQR16.35) g, p<0.05 and no difference in in daily fat intake. Both groups showed no worsening of serum creatinine at study end, with consistent declines in HbA1c (1.3(1.1) vs 0.7(1.25) %) and fasting blood glucose (1.5(3.37) vs 1.3(5.7) mmol/L). The VLCBD group showed significant reductions in total daily insulin dose (39(22) vs 0 IU, p<0.001), increased LDL-C and HDL-C, decline in IL-6 levels; with contrasting results in the control group. This was associated with significant weight reduction (-4.0(3.9) vs 0.2(4.2) kg, p = <0.001) and improvements in body fat percentages. WC was significantly reduced in the VLCBD group, even after adjustments to age, HbA1c, weight and creatinine changes. Both dietary interventions were well received with no reported adverse events.
CONCLUSION: This study demonstrated that dietary intervention of very low carbohydrate diet in patients with underlying diabetic kidney disease was safe and associated with significant improvements in glycemic control, anthropometric measurements including weight, abdominal adiposity and IL-6. Renal outcomes remained unchanged. These findings would strengthen the importance of this dietary intervention as part of the management of patients with diabetic kidney disease.