OBJECTIVES: We aimed to assess the association between consumption of UPFs and risk of mortality and major CVD in a cohort from multiple world regions.
DESIGN: This analysis includes 138,076 participants without a history of CVD between the ages of 35 and 70 y living on 5 continents, with a median follow-up of 10.2 y. We used country-specific validated food-frequency questionnaires to determine individuals' food intake. We classified foods and beverages based on the NOVA classification into UPFs. The primary outcome was total mortality (CV and non-CV mortality) and secondary outcomes were incident major cardiovascular events. We calculated hazard ratios using multivariable Cox frailty models and evaluated the association of UPFs with total mortality, CV mortality, non-CV mortality, and major CVD events.
RESULTS: In this study, 9227 deaths and 7934 major cardiovascular events were recorded during the follow-up period. We found a diet high in UPFs (≥2 servings/d compared with 0 intake) was associated with higher risk of mortality (HR: 1.28; 95% CI: 1.15, 1.42; P-trend < 0.001), CV mortality (HR: 1.17; 95% CI: 0.98, 1.41; P-trend = 0.04), and non-CV mortality (HR: 1.32; 95% CI 1.17, 1.50; P-trend < 0.001). We did not find a significant association between UPF intake and risk of major CVD.
CONCLUSIONS: A diet with a high intake of UPFs was associated with a higher risk of mortality in a diverse multinational study. Globally, limiting the consumption of UPFs should be encouraged.
OBJECTIVES: To examine the associations among UPF intake, anthropometric adiposity indicators, and obesity status in Canadian children.
DESIGN, SETTING, AND PARTICIPANTS: In the CHILD Cohort Study, one of the largest prospective, multicenter, population-based pregnancy cohorts in Canada, diet was assessed during the 3-year visit (September 2011 to June 2016), and anthropometric measurements were assessed at the 5-year visit (December 2013 to April 2018). Data analysis was performed between July 1, 2023, and June 30, 2024.
EXPOSURE: Diet intake was assessed using a semiquantitative food frequency questionnaire at 3 years of age. UPFs were identified using the NOVA classification system.
MAIN OUTCOMES AND MEASURES: Anthropometric adiposity indicators were measured at 5 years of age and used to calculate age- and sex-standardized z scores for body mass index (BMI), waist to height ratio, and subscapular and triceps skinfold thicknesses, and obesity, which was defined using BMI z score cutoffs. Multivariable-adjusted regression analyses were used to examine the associations of UPF with adiposity and obesity development, accounting for parental, birth, and early-childhood factors.
RESULTS: Among 2217 participants included in this study, median age at the outcome assessment was 5.0 (IQR, 5.0-5.1) years, and 1175 (53.0%) were males. At 3 years of age, UPF contributed 45.0% of total daily energy intake. UPF energy contribution was higher in males vs females (46.0% vs 43.9%; P