Displaying publications 201 - 219 of 219 in total

Abstract:
Sort:
  1. Kassim M, Yusoff KM, Ong G, Sekaran S, Yusof MY, Mansor M
    Fitoterapia, 2012 Sep;83(6):1054-9.
    PMID: 22626749 DOI: 10.1016/j.fitote.2012.05.008
    Malaysian Gelam honey has anti-inflammatory and antibacterial properties, a high antioxidant capacity, and free radical-scavenging activity. Lipopolysaccharide (LPS) stimulates immune cells to sequentially release early pro- and anti-inflammatory cytokines and induces the synthesis of several related enzymes. The aim of this study was to investigate the effect of the intravenous injection of honey in rats with LPS-induced endotoxemia. The results showed that after 4h of treatment, honey reduced cytokine (tumor necrosis factor-α, interleukins 1β, and 10) and NO levels and increased heme oxygenase-1 levels. After 24h, a decrease in cytokines and NO and an increase in HO-1 were seen in all groups, whereas a reduction in HMGB1 occurred only in the honey-treated groups. These results support the further examination of honey as a natural compound for the treatment of a wide range of inflammatory diseases.
    Matched MeSH terms: Lipopolysaccharides
  2. Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM
    J Ethnopharmacol, 2011 Jun 14;136(1):75-82.
    PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragyna speciosa Korth (Rubiaceae) is one of the medicinal plants used traditionally to treat various types of diseases especially in Thailand and Malaysia. Its anti-inflammatory and analgesic properties in its crude form are well documented. In this study, the cellular mechanism involved in the anti-inflammatory effects of mitragynine, the major bioactive constituent, was investigated.

    MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).

    RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.

    CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.

    Matched MeSH terms: Lipopolysaccharides
  3. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Front Cell Neurosci, 2020;14:598453.
    PMID: 33551748 DOI: 10.3389/fncel.2020.598453
    Lipopolysacharide (LPS) pre-conditioning (PC), has been shown to exert protective effects against cytotoxic effects. Therefore, we hypothesized, the tolerance produced by LPS PC will be resulted by the alterations and modifications in gene and protein expression. With reference to the results of MTT assays, AO/PI staining, and Annexin V-FITC analyses of LPS concentration (0.7815-50 μg/mL) and time-dependent (12-72 h) experiments, the pre-exposure to 3 μg/mL LPS for 12 h protected the differentiated PC12 cells against 0.75 mg/mL LPS apoptotic concentration. LPS-treated cells secreted more inflammatory cytokines like IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-17, IFN-γ, and TNF-α than LPS-PC cells. The production of inflammatory mediators ROS and NO was also higher in the LPS-induced cells compared to LPS-PC cells. Conversely, anti-inflammatory cytokines (like IL-10, IL-13, CNTF, and IL-1Ra) were upregulated in the LPS-PC cells but not in the LPS-induced cells. Meanwhile, the LPS initiated caspase-8 which in turn activates effector caspase 3/7. When the activities of caspases in the LPS-induced cells were inhibited using z-VADfmk and z-DEVDfmk, the expressions of c-MYC and Hsp70 were increased, but p53 was reduced. The potential molecules associated with protective and destructive effect was measured by RT2 Profiler PCR array to elucidate the signaling pathways and suggested inhibition NF-κB/caspase-3 signaling pathway regulates the cytoprotective genes and proto-oncogenes. In conclusion, this study provides a basis for future research to better understand the molecular mechanism underlying LPS pre-conditioning /TLR4 pre-activation and its functional role in offering cytoprotective response in neuronal environment.
    Matched MeSH terms: Lipopolysaccharides
  4. Zhu B, Qian C, Zhou F, Guo J, Chen N, Gao C, et al.
    J Ethnopharmacol, 2020 May 10;253:112663.
    PMID: 32045682 DOI: 10.1016/j.jep.2020.112663
    ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing) is traditionally used as a folk medicine for the treatments of inflammation, high fever, hepatitis and cancer, and can improve the immune function of the patient. It belongs to the family of Vitaceae, and is mainly distributed in southeast China (Yunnan province) and can be found in India (Andaman Islands), Myanmar, Thailand, Vietnam, Malaysia and Indonesia in the valleys with 1100-1300 m above the sea level.

    AIM OF THE STUDY: The present study aimed to characterize the chemical properties of a purified polysaccharide extracted from the aerial part of Tetrastigma hemsleyanum (SYQP) and investigate its antipyretic and antitumor effects in mice models.

    MATERIALS AND METHODS: Water-soluble crude polysaccharides from the aerial parts of Tetrastigma hemsleyanum were extracted and fractionated by DEAE and gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, and FTIR analysis were performed to characterize the SYQP. Antipyretic effect of SYQP was examined using Brewer's yeast induced hyperthermia test. Antitumor effect was investigated using H22 tumor bearing mice. The serum cytokines were determined to evaluated the biological activities of SYQP.

    RESULTS: SYQP was composed of galacturonic acid (GalA), glucose (Glc), mannose (Man), arabinose (Ara), galactose (Gal), and rhamnose (Rha) with a molar ratio of 11.3:7.1:2.5:1.0:0.9:0.5 and it had an average molecular weight of 66.2 kDa. The oral administration of SYQP at 200 and 400 mg/kg could markedly suppress the hyperthermia of mice induced by Brewer's yeast and decrease the production of cytokines especially prostaglandin E2 (PGE2) in the serum of mice. SYQP inhibited the growth of H22 tumor in mice with inhibitory rate of 39.9% at the administration dose of 200 mg/kg and increased the production of cytokines such as tumor necrosis factor-alpha (TNF-a) and interferon γ (IFN-γ). Experimental results showed that the preventive administration of SYQP before lipopolysaccharide (LPS) reduced the high cytokine levels such as IL-6, IL-10 and IFN-γ, indicating that SYQP might act as a competitor with LPS to interact with toll like receptor 4 (TLR4), which further regulated the secretion of cytokines.

    CONCLUSION: The anti-inflammatory and antitumor activities of SYQP might be related to its regulation of host immune function by controlling the secretion of cytokines.

    Matched MeSH terms: Lipopolysaccharides
  5. Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, et al.
    Exp Brain Res, 2014 Nov;232(11):3687-96.
    PMID: 25098558 DOI: 10.1007/s00221-014-4052-4
    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.
    Matched MeSH terms: Lipopolysaccharides/toxicity*
  6. Kim YH, Kim KH, Han CS, Park SH, Yang HC, Lee BY, et al.
    J Cosmet Sci, 2008 Sep-Oct;59(5):419-30.
    PMID: 18841306
    Crinum asiaticum Linne var. japonicum has long been used as a rheumatic remedy, as an anti-pyretic and as an anti-ulcer treatment, and for the alleviation of local pain and fever in Korea and Malaysia. In order to investigate the possibility of Crinum asiaticum Linne var. japonicum extract as a cosmetic ingredient, we measured its anti-inflammatory effect by its inhibition of iNOS (inducible nitric oxide synthase) and the release of PGE2, IL-6, and IL-8. We also measured its anti-allergic effect by its inhibition of beta-hexosamidase release. An HPLC experiment after extraction with 95% EtOH at pH 3.5 showed that Crinum asiaticum Linne var. japonicum was mainly composed of lycorine (up to 1%), a well-known immunosuppressor. The content of lycorine varied, depending on the type of plant tissue analyzed and the extraction method. In an anti-inflammatory assay for inhibition of nitric oxide formation on lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells, the ethanol extract of Crinum asiaticum showed an inhibitory activity of NO production in a dose-dependent manner (IC50 = 58.5 microg/ml). Additional study by RT-PCR demonstrated that the extract of Crinum asiaticum significantly suppressed the expression of the iNOS gene. Moreover, the extract of Crinum asiaticum did not show any cytotoxicity, but did show a cell proliferation effect against LPS (a 10 approximately 60% increase in cell viability). In an assay to determine inhibition of the H2O2-activated release of PGE2, IL-6, and IL-8 in human normal fibroblast cell lines, the release of PGE2 and IL-6 was almost completely inhibited above concentrations of 0.05% and 1%, respectively. Moreover, the release of IL-8 was completely inhibited over the entire range of concentration (>0.0025%). In order to investigate the skin-sensitizing potentials of the extract of Crinum asiaticum, a human clinical test was performed after repeated epicutaneous 48-h applications under an occlusive patch (RIPT). The repeated and single cutaneous applications of Crinum asiaticum Linne var. japonicum extract under the occlusive patch did not provoke any cumulative irritation and sensitization reactions. The result showed that the extract of Crinum asiaticum Linne var. japonicum has a sufficient anti-inflammatory effect. Therefore, Crinum asiaticum Linne var. japonicum extract may be useful for development as an ingredient in cosmetic products.
    Matched MeSH terms: Lipopolysaccharides/pharmacology
  7. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: Lipopolysaccharides/pharmacology*
  8. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Lipopolysaccharides/toxicity
  9. Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL
    J Ethnopharmacol, 2016 Nov 04;192:248-255.
    PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032
    PHARMOCOLOGICAL RELEVANCE: 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases.

    AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs).

    MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated.

    RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs.

    CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.

    Matched MeSH terms: Lipopolysaccharides/toxicity*
  10. Sosroseno W, Bird PS, Seymour GJ
    J Periodontal Res, 2009 Aug;44(4):529-36.
    PMID: 18973550 DOI: 10.1111/j.1600-0765.2008.01157.x
    Elevated nitric oxide (NO) has been associated with destructive periodontal disease. The aim of the present study was to test the hypothesis that exogenous NO may inhibit a protective immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in a murine model.
    Matched MeSH terms: Lipopolysaccharides/immunology*
  11. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Lipopolysaccharides/pharmacology
  12. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: Lipopolysaccharides
  13. Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, et al.
    Fitoterapia, 2011 Dec;82(8):1190-7.
    PMID: 21871542 DOI: 10.1016/j.fitote.2011.08.002
    The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS.
    Matched MeSH terms: Lipopolysaccharides
  14. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Lipopolysaccharides
  15. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E
    Phytother Res, 2018 Dec;32(12):2510-2519.
    PMID: 30238535 DOI: 10.1002/ptr.6190
    Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.
    Matched MeSH terms: Lipopolysaccharides
  16. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

    Matched MeSH terms: Lipopolysaccharides
  17. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ
    J Periodontal Res, 2007 Apr;42(2):124-30.
    PMID: 17305870
    Inducible nitric oxide synthase (iNOS) activity is known to regulate the immune response. The present study was carried out to determine the effect of L-N6-(1-iminoethyl)-lysine (L-NIL), an iNOS inhibitor, on the induction of immune response to Actinobacillus actinomycetemcomitans lipopolysaccharide in mice.
    Matched MeSH terms: Lipopolysaccharides
  18. Rasheed ZB, Lee YS, Kim SH, Teoh T, MacIntyre DA, Bennett PR, et al.
    PMID: 36213265 DOI: 10.3389/fendo.2022.983924
    BACKGROUND: Prematurity is the leading cause of childhood death under the age of five. The aetiology of preterm birth is multifactorial; however, inflammation and infection are the most common causal factors, supporting a potential role for immunomodulation as a therapeutic strategy. 15-Deoxy-Delta-12,14-prostaglandin J2 (15dPGJ2) is an anti-inflammatory prostaglandin and has been shown to delay lipopolysaccharide (LPS) induced preterm labour in mice and improve pup survival. This study explores the immunomodulatory effect of 15dPGJ2 on the transcription factors NF-κB and AP-1, pro-inflammatory cytokines, and contraction associated proteins in human cultured myocytes, vaginal epithelial cell line (VECs) and primary amnion epithelial cells (AECs).

    METHODS: Cells were pre-incubated with 32µM of 15dPGJ2 and stimulated with 1ng/mL of IL-1β as an in vitro model of inflammation. Western immunoblotting was used to detect phosphorylated p-65 and phosphorylated c-Jun as markers of NF-κB and AP-1 activation, respectively. mRNA expression of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was examined, and protein expression of COX-2 and PGE2 were detected by western immunoblotting and ELISA respectively. Myometrial contractility was examined ex-vivo using a myograph.

    RESULTS: 15dPGJ2 inhibited IL-1β-induced activation of NF-κB and AP-1, and expression of IL-6, IL-8, TNF-α, COX-2 and PGE2 in myocytes, with no effect on myometrial contractility or cell viability. Despite inhibiting IL-1β-induced activation of NF-κB, expression of IL-6, TNF-α, and COX-2, 15dPGJ2 led to activation of AP-1, increased production of PGE2 and increased cell death in VECs and AECs.

    CONCLUSION: We conclude that 15dPGJ2 has differential effects on inflammatory modulation depending on cell type and is therefore unlikely to be a useful therapeutic agent for the prevention of preterm birth.

    Matched MeSH terms: Lipopolysaccharides
  19. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Lipopolysaccharides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links