Displaying publications 221 - 240 of 1094 in total

Abstract:
Sort:
  1. Yazici Z, Gumusova S, Tamer C, Muftuoglu B, Ozan E, Arslan S, et al.
    Trop Biomed, 2019 Sep 01;36(3):803-809.
    PMID: 33597501
    Bovine parainfluenza 3 virus (BPI3V)is one of the most important respiratory pathogens and a leading cause of serious respiratory illnesses in cattle, both independent of and in connection with other pathogens involved in the bovine respiratory disease complex (BRDC). In this study, we aimed to identify the historical circulation of genotype C bovine BPI3V (BPI3Vc) in Turkey using the archival serum samples of domestic ruminants that had been collected from six provinces of northern Anatolia in Turkey between 2009-2010. A total of 896 sera from cattle (n=442), sheep (n=330), and goats (n=124) were randomly selected and screened with a virus neutralization test in order to detect antibodies for BPI3Vc. The overall seropositivity rate was 21.09%, with seropositivity rates for cattle, sheep, and goats of 21.04%, 20.00%, and 24.19%, respectively. Neutralizing antibody titers for selected samples ranged between 1/4 to 1/512. This study represents the first serological study conducted using the first BPI3V isolate of Turkey.
    Matched MeSH terms: Genotype
  2. Alareqi LMQ, Mahdy MAK, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R
    Acta Trop, 2016 Oct;162:174-179.
    PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016
    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
    Matched MeSH terms: Genotype
  3. Chua KH, Ooh YY, Chai HC
    Int. J. Immunogenet., 2016 Oct;43(5):303-9.
    PMID: 27519474 DOI: 10.1111/iji.12287
    Tumour necrosis factor superfamily 4 (TNFSF4) gene has been reported to be associated with systemic lupus erythematosus (SLE) susceptibility due to its encoding for OX40L protein that can increase autoantibody production and cause imbalance of T-cell proliferation. The purpose of this study was to investigate the association of TNFSF4 rs2205960, rs1234315, rs8446748 and rs704840 with SLE in the Malaysian population. A total of 476 patients with SLE and 509 healthy controls were recruited. Real-time polymerase chain reaction (PCR) was applied to genotype the selected single nucleotide polymorphisms (SNPs). Allelic and genotypic frequencies of each SNP were calculated for each ethnic group, and association test was performed using logistic regression. The overall association of each SNP in Malaysian patients with SLE was determined with meta-analysis. The frequency of minor T allele of TNFSF4 rs2205960 was significant in Chinese and Indian patients with SLE, with P values of 0.05 (OR = 1.27, 95% CI: 1.00-1.61) and 0.004 (OR = 3.16, 95% CI: 1.41-7.05), respectively. Significant association of minor G allele of rs704840 with SLE was also observed in Chinese (P = 0.03, OR = 1.26, 95% CI: 1.02-1.56). However, after Bonferroni correction, only T allele of rs2205960 remained significantly associated with Indian cohort. Overall, minor G allele of rs704840 showed significant association with SLE in the Malaysian population with P values of 0.05 (OR = 1.20, 95% CI: 1.00-1.43). We suggested TNFSF4 rs704840 could be the potential SLE risk factors in the Malaysian population.
    Matched MeSH terms: Genotype
  4. AlMeman AA, Ismail R, Perola M
    Drug Metab Lett, 2016;10(3):213-218.
    PMID: 27515451
    INTRODUCTION: Methadone is accepted as an alternative therapy in opioid use disorders worldwide. Methadone responsiveness, however, is affected by a range of CYP450 enzymes and OPRM1 polymorphisms.

    OBJECTIVE: This study sought to detect CYP2B6 and OPRM1 variants and their genotypes, as major contributors to inter-variability in methadone responsiveness and methadone dose requirements.

    METHODS: We carried out a prospective experimental one-phase pharmacogenetic study in four addiction clinics in Malaysia. Patients on stable methadone maintenance therapy were recruited. The prevalence of the CYP2B6 and OPRM1 polymorphisms was determined using a nested polymerase chain reaction (PCR), followed by genotyping. A two-step multiplex PCR method was developed to simultaneously detect the 26 SNPs in these two genes.

    RESULTS: 120 males were recruited for this study. The patients were between 21and 59 years old, although the majority of the patients were in their 30s. C64T and G15631T in CYP2B6and G31A, G691C, and A118G in OPRM1 were found to be polymorphic, and the allelic frequencies of each were calculated. We further detected eight new haplotypes.

    CONCLUSION: C64T and G15631T in CYP2B6and G31A, G691C, and A118G in OPRM1were found to be polymorphic. The new haplotypes may give a new insight on methadone clinics.

    Matched MeSH terms: Genotype
  5. Leng CY, Low HC, Chua LL, Chong ML, Sulaiman H, Azwa I, et al.
    HIV Med, 2017 05;18(5):321-331.
    PMID: 27649852 DOI: 10.1111/hiv.12432
    OBJECTIVES: Human papillomavirus (HPV)-associated cancers disproportionately affect those infected with HIV despite effective combination antiretroviral therapy (cART). The primary aim of this study was to quantify HPV16 and HPV52 E6-specific interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) T-cell responses, a correlate of protective immunity, in the first year following cART initiation and subsequently in those patients with suboptimal (sIR) and optimal (oIR) immune reconstitution.

    METHODS: Ninety-four HIV-infected patients were recruited to the study; a longitudinal cohort of patients recruited just prior to commencing cART and followed up for 48 weeks (n = 27), and a cross-sectional cohort (n = 67) consisting of patients with sIR (CD4 T-cell count < 350 cells/μL) and oIR (CD4 T-cell count > 500 cells/μL) after a minimum of 2 years on cART. Controls (n = 29) consisted of HIV-negative individuals. IFN-γ ELISPOT responses against HPV16 and HPV52 E6 were correlated to clinical characteristics, anal and oral HPV carriage, T-cell maturational subsets, markers of activation, senescence and T-regulatory cells.

    RESULTS: HPV16 and HPV52 E6-specific T-cell responses were detected in only one of 27 patients (3.7%) during the initial phase of immune recovery. After at least 2 years of cART, those who achieved oIR had significantly higher E6-specific responses (9 of 34; 26.5%) compared with those with sIR (2 of 32; 6.3%) (P = 0.029). Apart from higher CD4 T-cell counts and lower CD4 T-cell activation, no other immunological correlates were associated with the detection of HPV16 and HPV52 E6-specific responses.

    CONCLUSIONS: HPV16 and HPV52 E6-specific IFN-γ T-cell responses, a correlate of protective immunity, were detected more frequently among HIV-infected patients who achieved optimal immune recovery on cART (26.5%) compared with those with suboptimal recovery (6.3%).

    Matched MeSH terms: Genotype
  6. Lim SG, Aghemo A, Chen PJ, Dan YY, Gane E, Gani R, et al.
    Lancet Gastroenterol Hepatol, 2017 01;2(1):52-62.
    PMID: 28404015 DOI: 10.1016/S2468-1253(16)30080-2
    The Asia-Pacific region has disparate hepatitis C virus (HCV) epidemiology, with prevalence ranging from 0·1% to 4·7%, and a unique genotype distribution. Genotype 1b dominates in east Asia, whereas in south Asia and southeast Asia genotype 3 dominates, and in Indochina (Vietnam, Cambodia, and Laos), genotype 6 is most common. Often, availability of all-oral direct-acting antivirals (DAAs) is delayed because of differing regulatory requirements. Ideally, for genotype 1 infections, sofosbuvir plus ledipasvir, sofosbuvir plus daclatasvir, or ombitasvir, paritaprevir, and ritonavir plus dasabuvir are suitable. Asunaprevir plus daclatasvir is appropriate for compensated genotype 1b HCV if baseline NS5A mutations are absent. For genotype 3 infections, sofosbuvir plus daclatasvir for 24 weeks or sofosbuvir, daclatasvir, and ribavirin for 12 weeks are the optimal oral therapies, particularly for patients with cirrhosis and those who are treatment experienced, whereas sofosbuvir, pegylated interferon, and ribavirin for 12 weeks is an alternative regimen. For genotype 6, sofosbuvir plus pegylated interferon and ribavirin, sofosbuvir plus ledipasvir, or sofosbuvir plus ribavirin for 12 weeks are all suitable. Pegylated interferon plus ribavirin has been replaced by sofosbuvir plus pegylated interferon and ribavirin, and all-oral therapies where available, but cost and affordability remain a major issue because of the absence of universal health coverage. Few patients have been treated because of multiple barriers to accessing care. HCV in the Asia-Pacific region is challenging because of the disparate epidemiology, poor access to all-oral therapy because of availability, cost, or regulatory licensing. Until these problems are addressed, the burden of disease is likely to remain high.
    Matched MeSH terms: Genotype
  7. Wendel K, Akkök ÇA, Kutzsche S
    BMJ Case Rep, 2017 Jul 05;2017.
    PMID: 28679510 DOI: 10.1136/bcr-2016-218269
    Neonatal alloimmune thrombocytopaenia (NAIT) generally results from platelet opsonisation by maternal antibodies against fetal platelet antigens inherited from the infant's father. Newborn monochorionic twins presented with petechial haemorrhages at 10 hours of life, along with severe thrombocytopaenia. Despite the initial treatment with platelet transfusions and intravenous immunoglobulin, they both had persistent thrombocytopaenia during their first 45 days of life. Class I human leucocyte antigen (HLA) antibodies with broad specificity against several HLA-B antigens were detected in the maternal serum. Weak antibodies against HLA-B57 and HLA-B58 in sera from both twins supported NAIT as the most likely diagnosis. Platelet transfusion requirements of the twins lasted for 7 weeks. Transfusion of HLA-matched platelet concentrates was more efficacious to manage thrombocytopaenia compared with platelet concentrates from random donors. Platelet genotyping and determination of HLA antibody specificity are needed to select compatible platelet units to expedite safe recovery from thrombocytopaenia in NAIT.
    Matched MeSH terms: Genotype
  8. Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, van der Vlies P, Hak E, Berger RMF, et al.
    Pharmacogenomics, 2017 Jul;18(10):987-1001.
    PMID: 28639488 DOI: 10.2217/pgs-2017-0036
    AIM: To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors.

    METHODS: We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B.

    RESULTS: Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes.

    CONCLUSION: We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.

    Matched MeSH terms: Genotype
  9. Tan SSN, Fong AYY, Mejin M, Gerunsin J, Kong KL, Chin FYY, et al.
    Pharmacogenomics, 2017 08;18(13):1225-1239.
    PMID: 28745576 DOI: 10.2217/pgs-2017-0078
    BACKGROUND: Patients undergoing elective percutaneous coronary intervention (PCI) with drug-eluting stents (DES) who have impaired clopidogrel response, have a higher risk of subsequent major adverse cardiovascular events (MACE).

    AIM OF THE STUDY: To establish the relationship between CYP2C19 genotype, clopidogrel responsiveness and 1-year MACE.

    MATERIALS & METHODS: Aspirin/clopidogrel responses were assessed with Multiplate Analyzer and CYP2C19*2 allele by SpartanRx.

    RESULTS: A total of 42.0% carried ≥1 CYP2C19*2 allele. Prevalences of aspirin and clopidogrel high on-treatment platelet reactivity (HPR; local cutoffs: 300 AU*min for aspirin and 600 AU*min for clopidogrel) were 11.5% and 19.8% respectively. In multivariate ana-lysis, clopidogrel HPR was found to be an independent predictor for 1-year MACE (adj HR: 3.48, p = 0.022 ).

    CONCLUSION: Having clopidogrel HPR could be a potentially modifiable risk factor guided by phenotyping.

    Matched MeSH terms: Genotype
  10. Väisänen E, Paloniemi M, Kuisma I, Lithovius V, Kumar A, Franssila R, et al.
    Sci Rep, 2016 12 14;6:39267.
    PMID: 27966636 DOI: 10.1038/srep39267
    Two human parvoviruses were recently discovered by metagenomics in Africa, bufavirus (BuV) in 2012 and tusavirus (TuV) in 2014. These viruses have been studied exclusively by PCR in stool and detected only in patients with diarrhoea, although at low prevalence. Three genotypes of BuV have been identified. We detected, by in-house EIA, BuV1-3 IgG antibodies in 7/228 children (3.1%) and 10/180 adults (5.6%), whereas TuV IgG was found in one child (0.4%). All children and 91% of the adults were Finnish, yet interestingly 3/6 adults of Indian origin were BuV-IgG positive. By competition EIA, no cross-reactivity between the BuVs was detected, indicating that the BuV genotypes represent distinct serotypes. Furthermore, we analysed by BuV qPCR stool and nasal swab samples from 955 children with gastroenteritis, respiratory illness, or both, and found BuV DNA in three stools (0.3%) and for the first time in a nasal swab (0.1%). This is the first study documenting the presence of BuV and TuV antibodies in humans. Although the seroprevalences of both viruses were low in Finland, our results indicate that BuV infections might be widespread in Asia. The BuV-specific humoral immune responses appeared to be strong and long-lasting, pointing to systemic infection in humans.
    Matched MeSH terms: Genotype
  11. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p 
    Matched MeSH terms: Genotype
  12. Chua CL, Sam IC, Merits A, Chan YF
    PLoS Negl Trop Dis, 2016 08;10(8):e0004960.
    PMID: 27571254 DOI: 10.1371/journal.pntd.0004960
    BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood.

    METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes.

    CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

    Matched MeSH terms: Genotype
  13. Sainei NE, Kumar VS, Chin YS, Salih FAM
    Asian Pac J Cancer Prev, 2018 Oct 26;19(10):2807-2813.
    PMID: 30360610
    Background: Cervical cancer is currently the third most common female cancer in Malaysia , with the human
    papillomavirus (HPV) considered as one of the important contributory factors. This study was conducted to determine
    HPV prevalence, its genotype distribution, and other potential risk factors among women in Kota Kinabalu, Sabah
    in order to evaluate the likely efficacy of current HPV vaccines in the local population. Methods: A total of 240
    cervical samples were collected and subjected to DNA extraction, PCR amplification using the MY09/MY11 primer
    pair, and restriction fragment length polymorphism (RFLP) for HPV detection and genotyping. Sociodemographic,
    clinical, and behavioural data were also collected via questionnaires. Results: The prevalence of HPV infection was
    9.6%. The most common HPVs among 13 genotypes were high-risk HPV-56 (16.7%) and probable high-risk HPV-70
    (16.7%) followed by HPV-16, -58, -53, -61, -33, -59, and -66 (in decreasing order of prevalence) including the rare
    genotypes: HPV-62, -81, -82 and -84. Statistical analyses using logistic regression models showed that HPV infection
    was significantly associated with employment (OR 4.94; CI 1.58-15.40) and education at secondary/high school level
    (OR 0.13; CI 0.03-0.62). Conclusion: Distribution of HPV genotypes in Sabah indicated a high prevalence of HPV-56
    and -70 which are among the rare HPV types in West Malaysia and merit consideration in future strategies for HPV
    vaccination specifically for local Sabahan women.
    Matched MeSH terms: Genotype
  14. Chin KL, Sarmiento ME, Norazmi MN, Acosta A
    Tuberculosis (Edinb), 2018 12;113:139-152.
    PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008
    Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
    Matched MeSH terms: Genotype
  15. Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K
    Int J Mol Sci, 2020 Jan 15;21(2).
    PMID: 31952213 DOI: 10.3390/ijms21020546
    Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
    Matched MeSH terms: Genotype
  16. Hudu SA, Niazlin MT, Nordin SA, Tan SS, Omar H, Shahar H, et al.
    Afr Health Sci, 2018 Dec;18(4):1117-1133.
    PMID: 30766578 DOI: 10.4314/ahs.v18i4.33
    Background: Hepatitis B virus co-infection with other strains of viral hepatitis is associated with increased risk of liver cirrhosis and hepatic decompensation.

    Objectives: This is a prevalence study that assessed the genetic diversity of chronic hepatitis B patients and coinfection.

    Methods: Chronic hepatitis B patients enrolled in this study were tested for antibodies of other hepatitis viruses using ELISA kits. Patient clinical profiles were collected and partial genes of HBV, HCV, and HEV were amplified, sequenced, and analyzed using phylogenetic analysis. The associations between variables were determined using the chi-squared test.

    Results: Of the 82 patients recruited for this study, 53.7% were non-cirrhotic, 22.0% cirrhotic, 20.7% acute flare and 3.7% hepatocellular carcinoma. Majority (58%) of patients had a high level of ALT (≥34 U/L). Sequence analysis showed HBV (63.9%) belonged to genotype B, HEV belonged to genotype 4 while HCV belonged to genotype 3a and the genotypes were found to be significantly associated with the clinical stage of the patients (χ2=56.632; p<0.01). Similarly, Hepatitis B e antigen was also found to be significantly associated with the clinical stage of infection (χ2=51.952; p<0.01).

    Conclusion: This study revealed that genetic diversity was found to have a significant impact on the severity of infection.

    Matched MeSH terms: Genotype
  17. Goud EVSS, Malleedi S, Ramanathan A, Wong GR, Hwei Ern BT, Yean GY, et al.
    Asian Pac J Cancer Prev, 2019 Mar 26;20(3):935-941.
    PMID: 30912418
    Background: Interleukin-10 (IL10) genotypes have been closely correlated to the susceptibility for oral squamous cell
    carcinoma. More than half of oral cancers in the world occur in Asia with estimated 168,850 new cases were diagnosed
    in this geographical region alone. Considering the rising numbers of oral cancer cases in Malaysia, association of IL10
    A1082G gene polymorphism was correlated. Methodology: 41 oral squamous cell carcinoma (OSCC) cases and 48
    healthy controls of comparable age, gender, and with habits like smoking, alcohol consumption and betel quid chewing
    were selected. In this case-control study, samples were collected from the Oral Cancer Research and Coordinating
    Centre (OCRCC), Faculty of Dentistry, University of Malaya, Malaysia. Genotyping conditions were evaluated by
    polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The PCR products were subjected
    to digestion by MnlI enzyme (NEB, UK) to screen for the IL10 A-1082G. Digested DNA products were analyzed by
    electrophoresis on 4% (w/v) agarose gel, stained with ethidium bromide and imaged under UV illumination. Chi-square
    test and Fisher’s Exact test were used in statistical analysis. Results: AG genotypes were present in 81.3% and 86.0% of
    healthy control and OSCC cases respectively (OR=0.468, 95% CI=0.133-1.653). No significant association was found
    between IL10 A1082G polymorphism with risk habits, clinico-pathological parameters and 5-years overall survival.
    The findings also show no significant correlation between the IL10 genotype and features of OSCC within the case
    group as measured by tumor size, lymph node involvement, stage, invasive front, grading, depth, pattern of invasion.
    Conclusion: This study suggests that functional polymorphism AG of IL10 A1082G may have no influence with OSCC
    susceptibility. However, further investigation with larger sample sizes can be conducted to provide additional evidence
    to support the lack of association of IL10 A1082G polymorphism in oral cancer.
    Matched MeSH terms: Genotype
  18. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
    Matched MeSH terms: Genotype
  19. Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, et al.
    PLoS Genet, 2020 02;16(2):e1008576.
    PMID: 32053607 DOI: 10.1371/journal.pgen.1008576
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
    Matched MeSH terms: Genotype
  20. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: Genotype
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links