Displaying publications 221 - 240 of 252 in total

Abstract:
Sort:
  1. Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, et al.
    Sci Rep, 2020 05 14;10(1):7969.
    PMID: 32409737 DOI: 10.1038/s41598-020-64729-3
    The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1-18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
    Matched MeSH terms: Hydrogen Bonding
  2. Taha M, Rashid U, Imran S, Ali M
    Bioorg Med Chem, 2018 07 23;26(12):3654-3663.
    PMID: 29853339 DOI: 10.1016/j.bmc.2018.05.046
    Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (7-31) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50 ± 0.01 μM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.
    Matched MeSH terms: Hydrogen Bonding
  3. Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al.
    Molecules, 2021 Sep 20;26(18).
    PMID: 34577167 DOI: 10.3390/molecules26185696
    Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)-AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (-31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (-60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
    Matched MeSH terms: Hydrogen Bonding
  4. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
    Matched MeSH terms: Hydrogen Bonding
  5. Taha M, Imran S, Rahim F, Wadood A, Khan KM
    Bioorg Chem, 2018 02;76:273-280.
    PMID: 29223804 DOI: 10.1016/j.bioorg.2017.12.001
    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.
    Matched MeSH terms: Hydrogen Bonding
  6. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
    Matched MeSH terms: Hydrogen Bonding
  7. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Hydrogen Bonding
  8. Xing M, Akowuah GA, Gautam V, Gaurav A
    J Biomol Struct Dyn, 2017 Oct;35(13):2910-2924.
    PMID: 27608741 DOI: 10.1080/07391102.2016.1234417
    Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.
    Matched MeSH terms: Hydrogen Bonding
  9. Yusuf M, Mohamed N, Mohamad S, Janezic D, Damodaran KV, Wahab HA
    J Chem Inf Model, 2016 Jan 25;56(1):82-100.
    PMID: 26703840 DOI: 10.1021/acs.jcim.5b00331
    Increased reports of oseltamivir (OTV)-resistant strains of the influenza virus, such as the H274Y mutation on its neuraminidase (NA), have created some cause for concern. Many studies have been conducted in the attempt to uncover the mechanism of OTV resistance in H274Y NA. However, most of the reported studies on H274Y focused only on the drug-bound system, so the direct effects of the mutation on NA itself prior to drug binding still remain unclear. Therefore, molecular dynamics simulations of NA in apo form, followed by principal component analysis and interaction energy calculations, were performed to investigate the structural changes of the NA binding site as a result of the H274Y mutation. It was observed that the disruption of the NA binding site due to the H274Y mutation was initiated by the repulsive effect of Y274 on the 250-loop, which in turn altered the hydrogen-bonding network around residue 274. The rotated W295 side chain caused the upward movement of the 340-loop. Consequently, sliding box docking results suggested that the binding pathway of OTV was compromised because of the disruption of this binding site. This study also highlighted the importance of the functional group at C6 of the sialic acid mimicry. It is hoped that these results will improve the understanding of OTV resistance and shed some light on the design of a novel anti-influenza drug.
    Matched MeSH terms: Hydrogen Bonding
  10. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Hydrogen Bonding
  11. Mohamoud HS, Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, et al.
    Comput Math Methods Med, 2014;2014:904052.
    PMID: 24723968 DOI: 10.1155/2014/904052
    GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.
    Matched MeSH terms: Hydrogen Bonding
  12. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Hydrogen Bonding
  13. Kumar CS, Loh WS, Ooi CW, Quah CK, Fun HK
    Molecules, 2013 Oct 15;18(10):12707-24.
    PMID: 24132195 DOI: 10.3390/molecules181012707
    Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a-i) containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.
    Matched MeSH terms: Hydrogen Bonding
  14. Chua KH, Chai HC
    Genet. Mol. Res., 2012;11(1):636-43.
    PMID: 22535399 DOI: 10.4238/2012.March.16.1
    Hemagglutinin (HA) protein plays an important role in binding the influenza virus to infected cells and therefore mediates infection. Deposited HA sequences of 86 Asian strains of influenza A (H1N1) viruses during the first outbreak were obtained from the NCBI database and compared. Interaction of the HA protein of influenza A (H1N1) virus with the human sialic acid receptor was also studied using bioinformatics. Overall, not more than three single-point amino acid variants/changes were observed in the HA protein region of influenza A (H1N1) virus from Asian countries when a selected group sequence comparison was made. The bioinformatics study showed that the HA protein of influenza A (H1N1) binds to the sialic acid receptor in human airway receptors, possibly key to air-borne infection in humans.
    Matched MeSH terms: Hydrogen Bonding
  15. Yap BK, Buckle MJ, Doughty SW
    J Mol Model, 2012 Aug;18(8):3639-55.
    PMID: 22354276 DOI: 10.1007/s00894-012-1368-5
    5-HT(1A) serotonin and D1 dopamine receptor agonists have been postulated to be able to improve negative and cognitive impairment symptoms of schizophrenia, while partial agonists and antagonists of the D2 and 5-HT(2A) receptors have been reported to be effective in reducing positive symptoms. There is therefore a need for well-defined homology models for the design of more selective antipsychotic agents, since no three-dimensional (3D) crystal structures of these receptors are currently available. In this study, homology models were built based on the high-resolution crystal structure of the β(2)-adrenergic receptor (2RH1) and further refined via molecular dynamics simulations in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer system with the GROMOS96 53A6 united atom force field. Docking evaluations with representative agonists and antagonists using AutoDock 4.2 revealed binding modes in agreement with experimentally determined site-directed mutagenesis data and significant correlations between the computed and experimental pK (i) values. The models are also able to distinguish between antipsychotic agents with different selectivities and binding affinities for the four receptors, as well as to differentiate active compounds from decoys. Hence, these human 5-HT(1A), 5-HT(2A), D1 and D2 receptor homology models are capable of predicting the activities of novel ligands, and can be used as 3D templates for antipsychotic drug design and discovery.
    Matched MeSH terms: Hydrogen Bonding
  16. Saleh MA, Solayman M, Paul S, Saha M, Khalil MI, Gan SH
    Biomed Res Int, 2016;2016:9142190.
    PMID: 27294143 DOI: 10.1155/2016/9142190
    Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1.
    Matched MeSH terms: Hydrogen Bonding
  17. Subramaniam R, Mani MP, Jaganathan SK
    Cardiovasc Eng Technol, 2018 09;9(3):503-513.
    PMID: 29700782 DOI: 10.1007/s13239-018-0357-y
    In this study, a small vascular graft based on polyurethane (PU) blended with chitosan (Ch) nanoparticles was fabricated using electrospinning technique. Initially, the chitosan nanoparticles were synthesized using ionic gelation method. UV-Vis spectrophotometer confirmed the presence of synthesized Ch nanoparticles by exhibiting absorption peak at 288 nm and the Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the existence of the chitosan. Further, the synthesized Ch nanoparticles showed size diameter in the range of 134 ± 58 nm as measured using ImageJ. In the electrospun PU/chitosan graft, the fiber diameter and pore size diameter was found to be reduced compared to the pure PU owing to incorporation of chitosan into PU matrix. The FTIR spectrum revealed the presence of chitosan in the prepared nanocomposite membrane by the formation of the hydrogen bond and peak shift of CH and NH stretching. Moreover, the contact angle measurements revealed that the prepared graft showed decreased contact angle indicating hydrophilic nature compared to the pristine PU. The cytocompatibility studies revealed the non-toxic behavior of the fabricated graft. Hence, the prepared graft exhibiting significant physiochemical and non-toxic properties may be a plausible candidate for cardiovascular graft applications.
    Matched MeSH terms: Hydrogen Bonding
  18. Al-Anazi M, Al-Najjar BO, Khairuddean M
    Molecules, 2018 Dec 05;23(12).
    PMID: 30563058 DOI: 10.3390/molecules23123203
    Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian, and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics simulations. After a careful analysis of docking results, compounds 1a and 1d were chosen for molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation revealed the ability of compounds 1a and 1d to retain the essential interactions needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly within the active site with binding energies of -44.04 and -56.6 kcal/mol for compounds 1a and 1d, respectively. Compound 1d showed to have a close binding energy with TAK-285 (-66.17 kcal/mol), which indicates a high chance for compound 1d to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity. It is anticipated that the findings reported here may provide very useful information for designing effective drugs for the treatment of EGFR-related cancer disease.
    Matched MeSH terms: Hydrogen Bonding
  19. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
    Matched MeSH terms: Hydrogen Bonding
  20. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
    Matched MeSH terms: Hydrogen Bonding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links