Displaying publications 221 - 240 of 382 in total

Abstract:
Sort:
  1. Ahmad F, Dent M, Yunus N
    J Prosthodont, 2009 Oct;18(7):596-602.
    PMID: 19515166 DOI: 10.1111/j.1532-849X.2009.00481.x
    This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
    Matched MeSH terms: Materials Testing
  2. Ramesh S, Tan CY, Aw KL, Yeo WH, Hamdi M, Sopyan I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:89-90.
    PMID: 19024998
    The sintering behaviour of a commercial HA and synthesized HA was investigated over the temperature range of 700 degrees C to 1400 degrees C in terms of phase stability, bulk density, Young's modulus and Vickers hardness. In the present research, a wet chemical precipitation reaction was successfully employed to synthesize a submicron, highly crystalline, high purity and single phase stoichiometric HA powder that is highly sinteractive particularly at low temperature regimes below 1100 degrees C. It has been revealed that the sinterability of the synthesized HA was significantly greater than that of the commercial HA. The temperature for the onset of sintering and the temperature required to achieve densities above 98% of theoretical value were approximately 150 degrees C lower for the synthesized HA than the equivalent commercial HA. Nevertheless, decomposition of HA phase upon sintering was not observed in the present work for both powders.
    Matched MeSH terms: Materials Testing
  3. Tan CY, Ramesh S, Aw KL, Yeo WH, Hamdi M, Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:87-8.
    PMID: 19024997
    The sintering behaviour of synthesized HA powder that was calcined at various temperatures ranging from 700 degrees C to 1000 degrees C was investigated in terms of phase stability, bulk density, Young's modulus and Vickers hardness. The calcination treatment resulted in higher crystallinity of the starting HA powder. Decomposition of HA phase to form secondary phases was not observed in all the calcined powders. The results also indicated that powder calcination (up to 900 degrees C) prior to sintering has negligible effect on the sinterability of the HA compacts. However, powder calcined at 1000 degrees C was found to be detrimental to the properties of sintered hydroxyapatite bioceramics.
    Matched MeSH terms: Materials Testing
  4. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Contemp Dent Pract, 2008;9(2):33-40.
    PMID: 18264523
    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings.
    Matched MeSH terms: Materials Testing
  5. Wan Bakar W, McIntyre J
    Aust Dent J, 2008 Sep;53(3):226-34.
    PMID: 18782366 DOI: 10.1111/j.1834-7819.2008.00053.x
    Erosive substances such as gastric acids, lemon juice and even the less erosive cola drinks have been extensively investigated for their destructive effects on enamel. However, their effects on the tooth-coloured restoratives has not been widely analysed. The objective of this study was to assess their effects on the more commonly used glass containing restorative materials in vitro.
    Matched MeSH terms: Materials Testing
  6. Chandara C, Azizli KA, Ahmad ZA, Sakai E
    Waste Manag, 2009 May;29(5):1675-9.
    PMID: 19131236 DOI: 10.1016/j.wasman.2008.11.014
    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.
    Matched MeSH terms: Materials Testing
  7. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Materials Testing
  8. Lee CK, Darah I, Ibrahim CO
    Bioresour Technol, 2007 May;98(8):1684-9.
    PMID: 17137782
    The protocol for the enzymatic deinking of laser printed waste papers on a laboratory scale using cellulase (C) and hemicellulase (H) of Aspergillus niger (Amano) was developed as an effective method for paper recycling. A maximum deinking efficiency of almost 73% by the enzyme combination of C:H was obtained using the deinking conditions of pulping consistency of 1.0% (w/v) with the pulping time of 1.0min, temperature of 50 degrees C, pH=3.5, agitation rate of 60rpm, pulp concentration of 4% (w/v), concentration of each enzyme of 2.5U/g air dried pulp and the enzyme ratio of 1:1. The deinking efficiency was further enhanced to 95% using the optimized flotation system consisting of pH=6.0, Tween 80 of concentration 0.5% (w/w), working air flow rate of 10.0L/min and temperature of 45 degrees C. The deinked papers were found to exhibit properties comparable to the commercial papers suggesting the effectiveness of the enzymatic process developed.
    Matched MeSH terms: Materials Testing
  9. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2007 May;81(2):317-25.
    PMID: 17120221
    Among the various biomaterials available for tissue engineering and therapeutic applications, microbial polyhydroxyalkanoates offer the most diverse range of thermal and mechanical properties. In this study, the biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB); containing 50 mol % of 4-hydroxybutyrate] copolymer produced by Delftia acidovorans was evaluated. The cytotoxicity, mode of cell death, and genotoxicity of P(3HB-co-4HB) extract against V79 and L929 fibroblast cells were assessed using MTT assay, acridine orange/propidium iodide staining, and alkaline comet assay, respectively. Our results demonstrate that P(3HB-co-4HB) treated on both cell lines were comparable with clinically-used Polyglactin 910, where more than 60% of viable cells were observed following 72-h treatment at 200 mg/mL. Further morphological investigation on the mode of cell death showed an increase in apoptotic cells in a time-dependent manner in both cell lines. On the other hand, P(3HB-co-4HB) at 200 mg/mL showed no genotoxic effects as determined by alkaline comet assay following 72-h treatment. In conclusion, our study indicated that P(3HB-co-4HB) compounds showed good biocompatibility in fibroblast cells suggesting that it has potential to be used for future medical applications.
    Matched MeSH terms: Materials Testing
  10. Ahmad F, Christenson A, Bainbridge M, Yusof AP, Ab Ghani S
    Biosens Bioelectron, 2007 Mar 15;22(8):1625-32.
    PMID: 16934449
    A new implantable electrocatalytic glucose sensor for subcutaneous glucose monitoring has been fabricated by immobilizing glucose oxidase on a chemically modified carbon fiber. The sensor was inserted subcutaneously on a male spraguely rat without any incision after dipping the microsensor in the rat's serum for 3 days. The so called "stained" microsensor, operated in the amperometric mode with an applied potential of +0.23 V versus Ag|AgCl, was able to directly measure the glucose concentration upon infusion of glucose. The results obtained were encouraging, with the response time was less than 2s and the apparent Michaelis-Menten value at 5.1+/-0.5mM. The "stained" microsensor shows good stability and reproducibility with constant response spanned over 25 days. Most common interferences in glucose analysis were minimized by the outerlayer Nafion. Hematology examinations showed minimal material-tissue interaction. Use of such mechanical devices will allow a more refined understanding towards glucose control in diabetic patients as the implanted microsensor was not effected by biocompatibility failures.
    Matched MeSH terms: Materials Testing
  11. Fazan F, Shahida KB
    Med J Malaysia, 2004 May;59 Suppl B:69-70.
    PMID: 15468823
    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.
    Matched MeSH terms: Materials Testing
  12. Nather A
    Med J Malaysia, 2004 May;59 Suppl B:37-8.
    PMID: 15468807
    Matched MeSH terms: Materials Testing
  13. Baradaran S, Basirun WJ, Zalnezhad E, Hamdi M, Sarhan AA, Alias Y
    J Mech Behav Biomed Mater, 2013 Apr;20:272-82.
    PMID: 23453827 DOI: 10.1016/j.jmbbm.2013.01.020
    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C.
    Matched MeSH terms: Materials Testing
  14. Ahmad R, Morgano SM, Wu BM, Giordano RA
    J Prosthet Dent, 2005 Nov;94(5):421-9.
    PMID: 16275301
    Many studies on the strengthening effects of grinding and polishing, as well as heat treatment on ceramics, are not well standardized or use commercially available industrial polishing systems. The reported effectiveness of these strengthening mechanisms on ceramics may not be applicable to clinical dentistry.
    Matched MeSH terms: Materials Testing
  15. Hashim R, How LS, Kumar RN, Sulaiman O
    Bioresour Technol, 2005 Nov;96(16):1826-31.
    PMID: 16051090
    The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phenol formaldehyde (PF) resin in liquid, 2% based on oven dry weight of fibers, was used along with 0%, 10%, 15% and 20% of ATH. The flame retardant test was done using the limiting oxygen index (LOI) test. The other properties investigated include internal bond strength, thickness swelling and water absorption. The results showed that ATH loading increased as the LOI of MDF increased. This demonstrated that ATH could improved the fire retardant property of MDF at sufficient loading. An increase in concentration of ATH showed an increase in the IB values of MDF made without resin. MDF panels made without resin showed a progressive increase in internal bond as the composition of recycled old corrugated containers fiber increased. Addition of resin improved internal bond strength and reduced thickness swelling, and water absorption. Thickness swelling of panel increased as the composition of recycled old corrugated containers fiber increased. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that there is indication of ATH and resin filling the void space in between fibers.
    Matched MeSH terms: Materials Testing
  16. Ngadiman NH, Mohd Yusof N, Idris A, Kurniawan D
    Proc Inst Mech Eng H, 2016 Aug;230(8):739-49.
    PMID: 27194535 DOI: 10.1177/0954411916649632
    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.
    Matched MeSH terms: Materials Testing
  17. Jacobs E, Saralidze K, Roth AK, de Jong JJ, van den Bergh JP, Lataster A, et al.
    Biomaterials, 2016 Mar;82:60-70.
    PMID: 26751820 DOI: 10.1016/j.biomaterials.2015.12.024
    There are a number of drawbacks to incorporating large concentrations of barium sulfate (BaSO4) as the radiopacifier in PMMA-based bone cements for percutaneous vertebroplasty. These include adverse effects on injectability, viscosity profile, setting time, mechanical properties of the cement and bone resorption. We have synthesized a novel cement that is designed to address some of these drawbacks. Its powder includes PMMA microspheres in which gold particles are embedded and its monomer is the same as that used in commercial cements for vertebroplasty. In comparison to one such commercial cement brand, VertaPlex™, the new cement has longer doughing time, longer injection time, higher compressive strength, higher compressive modulus, and is superior in terms of cytotoxicity. For augmentation of fractured fresh-frozen cadaveric vertebral bodies (T6-L5) using simulated vertebroplasty, results for compressive strength and compressive stiffness of the construct and the percentage of the volume of the vertebral body filled by the cement were comparable for the two cements although the radiopacity of the new cement was significantly lower than that for VertaPlex™. The present results indicate that the new cement warrants further study.
    Matched MeSH terms: Materials Testing
  18. Gupta S, Parolia A, Jain A, Kundabala M, Mohan M, de Moraes Porto IC
    J Indian Soc Pedod Prev Dent, 2015 Jul-Sep;33(3):245-9.
    PMID: 26156281 DOI: 10.4103/0970-4388.160402
    The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin.
    Matched MeSH terms: Materials Testing
  19. Pramanik S, Ataollahi F, Pingguan-Murphy B, Oshkour AA, Osman NAA
    Sci Rep, 2015 May 07;5:9806.
    PMID: 25950377 DOI: 10.1038/srep09806
    Scaffold design from xenogeneic bone has the potential for tissue engineering (TE). However, major difficulties impede this potential, such as the wide range of properties in natural bone. In this study, sintered cortical bones from different parts of a bovine-femur impregnated with biodegradable poly(ethylene glycol) (PEG) binder by liquid phase adsorption were investigated. Flexural mechanical properties of the PEG-treated scaffolds showed that the scaffold is stiffer and stronger at a sintering condition of 1000°C compared with 900°C. In vitro cytotoxicity of the scaffolds evaluated by Alamar Blue assay and microscopic tests on human fibroblast cells is better at 1000°C compared with that at 900°C. Furthermore, in vitro biocompatibility and flexural property of scaffolds derived from different parts of a femur depend on morphology and heat-treatment condition. Therefore, the fabricated scaffolds from the distal and proximal parts at 1000°C are potential candidates for hard and soft TE applications, respectively.
    Matched MeSH terms: Materials Testing
  20. Zainol MM, Amin NA, Asmadi M
    Bioresour Technol, 2015 Aug;190:44-50.
    PMID: 25919936 DOI: 10.1016/j.biortech.2015.04.067
    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.
    Matched MeSH terms: Materials Testing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links