Diabetes mellitus has become a serious warning to mankind health all over the world. The management goal of diabetes is to keep blood glucose levels as close as possible to healthy individuals. Medications used to treat diabetes are usually associated with complications and may cause different side effects. Many traditional anti-diabetic plants have become popular in the management of diabetes mellitus. Flaxseed has been used as traditional medicine for centuries.
A bipolar disjunction is an extreme, yet common, biogeographic pattern in non-vascular plants, yet its underlying mechanisms (vicariance or long-distance dispersal), origin and timing remain poorly understood. Here, combining a large-scale population dataset and multiple dating analyses, we examine the biogeography of four bipolar Polytrichales mosses, common to the Holarctic (temperate and polar Northern Hemisphere regions) and the Antarctic region (Antarctic, sub-Antarctic, southern South America) and other Southern Hemisphere (SH) regions. Our data reveal contrasting patterns, for three species were of Holarctic origin, with subsequent dispersal to the SH, while one, currently a particularly common species in the Holarctic (Polytrichum juniperinum), diversified in the Antarctic region and from here colonized both the Holarctic and other SH regions. Our findings suggest long-distance dispersal as the driver of bipolar disjunctions. We find such inter-hemispheric dispersals are rare, occurring on multi-million-year timescales. High-altitude tropical populations did not act as trans-equatorial 'stepping-stones', but rather were derived from later dispersal events. All arrivals to the Antarctic region occurred well before the Last Glacial Maximum and previous glaciations, suggesting that, despite the harsh climate during these past glacial maxima, plants have had a much longer presence in this southern region than previously thought.
Application of urea manufacturing wastewater to teak (Tectona grandis) trees, a fast growing tropical timber plants, is an environmentally-friendly and cost-effective alternative for treatment of nitrogen-rich wastewater. However, the plant growth is strongly limited by lack of phosphorus (P) and potassium (K) elements when the plants are irrigated with wastewater containing high concentration of nitrogen (N). A greenhouse experiment was conducted to optimize the efficiency of teak-based remediation systems in terms of nutrient balance. Twelve test solutions consisted of 4 levels of P (95, 190, 570, 1140 mgL-1) and 3 levels of K (95, 190, 570 mgL-1) with a constant level of N (190 mgL-1) were applied to teak seedlings every four days during the study period. Evapotranspiration rate, nutrient removal percentage, leaf surface area, dry weight and nutrient contents of experimental plants were determined and compared with those grown in control solution containing only N (N:P:K = 1:0:0). Teak seedlings grown in units with 1:0.5:1 N:P:K ratio were highly effective at nutrient removal upto 47%, 48% and 49% for N, P and K, respectively. Removal efficiency of teak plants grown in other experimental units decreased with increasing P and K concentrations in test solutions. The lowest nutrient removal and plant growth were recorded in units with 1:6:0.5 N:P:K ratio which received the highest ratio of P to K. The findings indicated that teak seedlings functioned effectively as phytoremediation plants for N-rich wastewater treatment when they were being supplied with proper concentrations of P and K.
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.
Flood is among the natural disasters that commonly happened in Malaysia every year. During the flood, victims faced clean water shortages and deterioration of the environment resulting in long waiting times for aid to access. Hence, affordable and efficient filters are needed to supply clean water in the affected areas. Application of xylem tissue inside plant stem has the potential as a filter for water filtration. This research focuses on xylem tissue in Malaysian tropical plants from cassava stem. Cassava stems were prepared in a small-scale set-up as the xylem was used as a filter. Effects of cross-sectional area and hydrostatic pressure were analyzed and the results showed a directly proportional relationship with permeate flow rate. Upon filtration with red dye solution, total dye removal was achieved using a xylem with a minimal length of 3 cm and onwards. While for bacteria removal, E. coli bacteria have been removed when tested with a bacteria count plate. Thus, this study demonstrated the potential of the xylem tissue of the cassava plant as affordable and available natural raw materials to be used as water filters during an emergency.
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Energy security and environmental measurements are incomplete without renewable energy; therefore, there is a dire need to explore new energy sources. Hence, this study aimed to measure the wind power potential to generate renewable hydrogen (H2), including its production and supply cost. This study used first-order engineering model and net present value to measure the levelized cost of wind-generated renewable hydrogen by using the data source of the Pakistan Meteorological Department and State Bank of Pakistan. Results showed that the use of surplus wind and renewable hydrogen energy for green economic production is suggested as an innovative project option for large-scale hydrogen use. The key annual running expenses for hydrogen are electricity and storage costs, which have a significant impact on the costs of renewable hydrogen. The results also indicated that the project can potentially cut carbon dioxide (CO2) pollution by 139 million metric tons and raise revenue for wind power plants by US$2998.52 million. The renewable electrolyzer plants avoided CO2 at a rate of US$24.9-36.9/ton under baseload service, relative to US$44.3/ton for the benchmark. However, in the more practical mid-load situation, these plants have significant benefits. Further, the wind-generated renewable hydrogen delivers 6-11% larger annual rate of return than the standard CO2 catch plant due to their capacity to remain running and supply hydrogen to the consumer through periods of plentiful wind and heat. Also, the measured levelized output cost of hydrogen (LCOH) was US$6.22/kgH2, and for the PEC system, it was US$8.43/kgH2. Finally, it is a mutually agreed consensus among environmental scientists that the integration of renewable energy is the way forward to increase energy security and environmental performance by ensuring uninterrupted clean and green energy. This application has the potential to address Pakistan's urgent issues of large-scale surplus wind- and solar-generated energy, as well as rising energy demand.
Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.
In this paper, a novel, effective meta-heuristic, population-based Hybrid Firefly Particle Swarm Optimization (HFPSO) algorithm is applied to solve different non-linear and convex optimal power flow (OPF) problems. The HFPSO algorithm is a hybridization of the Firefly Optimization (FFO) and the Particle Swarm Optimization (PSO) technique, to enhance the exploration, exploitation strategies, and to speed up the convergence rate. In this work, five objective functions of OPF problems are studied to prove the strength of the proposed method: total generation cost minimization, voltage profile improvement, voltage stability enhancement, the transmission lines active power loss reductions, and the transmission lines reactive power loss reductions. The particular fitness function is chosen as a single objective based on control parameters. The proposed HFPSO technique is coded using MATLAB software and its effectiveness is tested on the standard IEEE 30-bus test system. The obtained results of the proposed algorithm are compared to simulated results of the original Particle Swarm Optimization (PSO) method and the present state-of-the-art optimization techniques. The comparison of optimum solutions reveals that the recommended method can generate optimum, feasible, global solutions with fast convergence and can also deal with the challenges and complexities of various OPF problems.
Leaf, seed, and tuber explants of C. latifolia were inoculated on MS medium supplemented with various concentrations of BAP and IBA, alone or in combinations, to achieve in vitro plant regeneration. Subsequently, antioxidant and antibacterial activities were determined from in vitro and in vivo plant developed. No response was observed from seed culture on MS media with various concentrations of PGRs. The highest percentage of callus was observed on tuber explants (94%) and leaf explants (89%) when cultured on MS media supplemented with IBA in combination with BAP. A maximum of 88% shoots per tuber explant, with a mean number of shoots (8.8 ± 1.0), were obtained on MS medium supplemented with combinations of BAP and IBA (2.5 mg L(-1)). The best root induction (92%) and mean number (7.6 ± 0.5) from tuber explants were recorded on 2.5 mg L(-1) IBA alone supplemented to MS medium. The higher antioxidant content (80%) was observed from in vivo tuber. However, tuber part from the intact plant showed higher inhibition zone in antibacterial activity compared to other in vitro and in vivo tested parts.
Zingiber zerumbet Sm., locally known to the Malay as "Lempoyang," is a perennial herb found in many tropical countries, including Malaysia. The rhizomes of Z. zerumbet, particularly, have been regularly used as food flavouring and appetizer in various Malays' cuisines while the rhizomes extracts have been used in Malay traditional medicine to treat various types of ailments (e.g., inflammatory- and pain-mediated diseases, worm infestation and diarrhea). Research carried out using different in vitro and in vivo assays of biological evaluation support most of these claims. The active pharmacological component of Z. zerumbet rhizomes most widely studied is zerumbone. This paper presents the botany, traditional uses, chemistry, and pharmacology of this medicinal plant.
Despite all of the control strategies, tuberculosis (TB) is still a major cause of death globally and one-third of the world's population is infected with TB. The drugs used for TB treatment have drawbacks of causing adverse side effects and emergence of resistance strains. Plant-derived medicines have since been used in traditional medical system for the treatment of numerous ailments worldwide. There were nine major review publications on antimycobacteria from plants in the last 17 years. However, none is focused on Southeast Asian medicinal plants. Hence, this review is aimed at highlighting the medicinal plants of Southeast Asian origin evaluated for anti-TB. This review is based on literatures published in various electronic database. A total of 132 plants species representing 45 families and 107 genera were reviewed; 27 species representing 20.5% exhibited most significant in vitro anti-TB activity (crude extracts and/or bioactive compounds 0-<10 µg/ml). The findings may motivate various scientists to undertake the project that may result in the development of crude extract that will be consumed as complementary or alternative TB drug or as potential bioactive compounds for the development of novel anti-TB drug.
This study aims to understand the factors and mechanisms influencing the spatio-temporal changes of fractional vegetation cover (FVC) in the northern slopes of the Tianshan Mountains. The MOD13Q1 product data between June and September (peak of plants growing) during the 2001-2020 period was incorporated into the pixel dichotomy model to calculate the vegetation cover changes. Then, the principal component analysis method was used to identify the primary driving factors affecting the change in vegetation cover from the natural, human, and economic perspectives. Finally, the partial correlation coefficients of FVC with temperature and precipitation were further calculated based on the pixel scale. The findings indicate that (1) FVC in the northern slopes of the Tianshan Mountains ranged from 0.37 to 0.47 during the 2001-2020 period, with an obvious inter-annual variation and an overall upward trend of about 0.4484/10 a. Although the vegetation cover had some changes over time, it was generally stable, and the area of strong variation only accounted for 0.58% of the total. (2) The five grades of vegetation cover were distributed spatially similarly, but the area-weighted gravity center for each vegetation class shifted significantly. The FVC under different land use/land cover types and elevations was obviously different, and as elevation increased, vegetation coverage presented a trend of a "∩"-shape change. (3) According to the results of principal component analysis, human activities, economic growth, and natural climate were the main driving factors that caused the changes in vegetation cover, and the cumulative contribution of the three reached 89.278%. In addition, when it came to climatic factors, precipitation had a greater driving force on the vegetation cover change, followed by temperature and sunshine hours. (4) Overall, precipitation and temperature were correlated positively with FVC, with the average correlation coefficient values of 0.089 and 0.135, respectively. Locally, the correlations vary greatly under different LULC and altitudes. This research can provide some scientific basis and reference for the vegetation evolution pattern and ecological civilization construction in the region.
In April 2021, the Japanese authorities' announcement of their decision to release processed wastewater from the damaged Fukushima Daiichi nuclear power plant into the Pacific Ocean over 30 y, beginning in 2023, triggered strong domestic and international opposition. Failure to handle this situation tactfully can lead to public disorder, civil disobedience, loss of trust in the authorities, and even diplomatic sanctions. In this article, we explain the underlying reasons behind this resistance, and we offer some strategic methods that the Japanese authorities can deploy to address opposing views and overcome the Fukushima wastewater crisis.
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A 600 nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 μM acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes.
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants.
A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation.