METHODS: To predict CD while prioritizing patient privacy, our study employed data anonymization involved adding Laplace noise to sensitive features like age and gender. The anonymized dataset underwent analysis using a differential privacy (DP) framework to preserve data privacy. DP ensured confidentiality while extracting insights. Compared with Logistic Regression (LR), Gaussian Naïve Bayes (GNB), and Random Forest (RF), the methodology integrated feature selection, statistical analysis, and SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) for interpretability. This approach facilitates transparent and interpretable AI decision-making, aligning with responsible AI development principles. Overall, it combines privacy preservation, interpretability, and ethical considerations for accurate CD predictions.
RESULTS: Our investigations from the DP framework with LR were promising, with an area under curve (AUC) of 0.848 ± 0.03, an accuracy of 0.797 ± 0.02, precision at 0.789 ± 0.02, recall at 0.797 ± 0.02, and an F1 score of 0.787 ± 0.02, with a comparable performance with the non-privacy framework. The SHAP and LIME based results support clinical findings, show a commitment to transparent and interpretable AI decision-making, and aligns with the principles of responsible AI development.
CONCLUSIONS: Our study endorses a novel approach in predicting CD, amalgamating data anonymization, privacy-preserving methods, interpretability tools SHAP, LIME, and ethical considerations. This responsible AI framework ensures accurate predictions, privacy preservation, and user trust, underscoring the significance of comprehensive and transparent ML models in healthcare. Therefore, this research empowers the ability to forecast CD, providing a vital lifeline to millions of CD patients globally and potentially preventing numerous fatalities.
MATERIALS AND METHODS: Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.
RESULTS: AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).
CONCLUSION: The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.
OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.
RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.
CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.
OBJECTIVE: This study aimed to document the process of designing and developing a mobile app for community education on colorectal cancer and assess the usability of the prototype.
METHODS: The nominal group technique (NGT) was used for the content development of the mobile app. NGT involving community educationists and clinicians combined with community representatives as the target users identified relevant health information and communication strategies including features for a user-friendly mobile app. The prototype was developed using framework Ionic 1, based on the Apache Cordova and Angular JS (Google). It was published in the Google Play store. In total, 50 mobile phone users aged 50 years and above and who had never been diagnosed with any type of cancer were invited to download and use the app. They were asked to assess the usability of the app using the validated Malay version of System Usability Scale Questionnaire for the Assessment of Mobile Apps questionnaire. The One-sample t test was used to assess the usability score with a cut-off value of 68 for the usable mobile app.
RESULTS: The Colorectal Cancer Awareness Application (ColorApp) was successfully developed in the local Malay language. The NGT discussion had suggested 6 main menus in the ColorApp prototype, which are Introduction, Sign and Symptoms, Risk Factors, Preventive Measures, Colorectal Cancer Screening Program, and immunochemical fecal occult blood test kit. A total of 2 additional artificial intelligence properties menus were added to allow user-ColorApp interaction: Analyze Your Status and ColorApp Calculator. The prototype has been published in the Google Play store. The mean usability score was 72 (SD 11.52), which indicates that ColorApp is a usable mobile app, and it can be used as a tool for community education on colorectal cancer.
CONCLUSIONS: ColorApp mobile app can be used as a user-friendly tool for community education on colorectal cancer.
OBJECTIVE: Our objective was to create a framework that can guide future implementation and research on the use of eHealth tools to support patients with growth disorders who require growth hormone therapy.
METHODS: A total of 12 pediatric endocrinologists with experience in eHealth, from a wide geographical distribution, participated in a series of online discussions. We summarized the discussions of 3 workshops, conducted during 2020, on the use of eHealth in the management of growth disorders, which were structured to provide insights on existing challenges, opportunities, and solutions for the implementation of eHealth tools across the patient journey, from referral to the end of pediatric therapy.
RESULTS: A total of 815 responses were collected from 2 questionnaire-based activities covering referral and diagnosis of growth disorders, and subsequent growth hormone therapy stages of the patient pathway, relating to physicians, nurses, and patients, parents, or caregivers. We mapped the feedback from those discussions into a framework that we developed as a guide to integration of eHealth tools across the patient journey. Responses focused on improved clinical management, such as growth monitoring and automation of referral for early detection of growth disorders, which could trigger rapid evaluation and diagnosis. Patient support included the use of eHealth for enhanced patient and caregiver communication, better access to educational opportunities, and enhanced medical and psychological support during growth hormone therapy management. Given the potential availability of patient data from connected devices, artificial intelligence can be used to predict adherence and personalize patient support. Providing evidence to demonstrate the value and utility of eHealth tools will ensure that these tools are widely accepted, trusted, and used in clinical practice, but implementation issues (eg, adaptation to specific clinical settings) must be addressed.
CONCLUSIONS: The use of eHealth in growth hormone therapy has major potential to improve the management of growth disorders along the patient journey. Combining objective clinical information and patient adherence data is vital in supporting decision-making and the development of new eHealth tools. Involvement of clinicians and patients in the process of integrating such technologies into clinical practice is essential for implementation and developing evidence that eHealth tools can provide value across the patient pathway.