Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
Considering the importance of tropical almond nuts as a snack item, a study was conducted to identify the flavour volatiles and acrylamide generated during the roasting of the nuts. The supercritical fluid extracted flavour components revealed 74 aroma active compounds made up of 27 hydrocarbons, 12 aldehydes, 11 ketones, 7 acids, 4 esters, 3 alcohols, 5 furan derivatives a pyrazine, and 2 unknown compounds. While low levels of acrylamide (8-86 microg/kg) were obtained in the roasted nuts, significant (P<0.05) increases occurred in concentration with increased roasting temperature and time. Carboxylic acids were the most abundant volatiles in the roasted almond nuts and less significant (P>0.05) concentration of acrylamide was generated with mild roasting and shorter roasting period.
Matched MeSH terms: Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Chromatography, Supercritical Fluid
Sinigrin, a precursor of allyl isothiocyanate, present in the Raphanus sativus exhibits diverse biological activities, and has an immense role against cancer proliferation. Therefore, the objective of this study was to quantify the sinigrin in the R. sativus roots using developed and validated RP-HPLC method and further evaluated its' anticancer activity. To achieve the objective, the roots of R. sativus were lyophilized to obtain a stable powder, which were extracted and passed through an ion-exchange column to obtain sinigrin-rich fraction. The RP-HPLC method using C18 analytical column was used for chromatographic separation and quantification of sinigrin in the prepared fraction, which was attained using the mobile phase consisting of 20 mM tetrabutylammonium: acetonitrile (80:20%, v/v at pH 7.0) at a flow rate of 0.5 mL/min. The chromatographic peak for sinigrin was showed at 3.592 min for pure sinigrin, where a good linearity was achieved within the concentration range of 50 to 800 µg/mL (R2 > 0.99), with an excellent accuracy (-1.37% and -1.29%) and precision (1.43% and 0.94%), for intra and inter-day, respectively. Finally, the MTT assay was performed for the sinigrin-rich fraction using three different human cancer cell lines, viz. prostate cancer (DU-145), colon adenocarcinoma (HCT-15), and melanoma (A-375). The cell-based assays were extended to conduct apoptotic and caspase-3 activities, to determine the mechanism of action of sinigrin in the treatment of cancer. MTT assay showed IC50 values of 15.88, 21.42, and 24.58 µg/mL for DU-145, HCT-15, and A-375 cell lines, respectively. Increased cellular apoptosis and caspase-3 expression were observed with sinigrin-rich fraction, indicating significant increase in overexpression of caspase-3 in DU-145 cells. In conclusion, a simple, sensitive, fast, and accurate RP-HPLC method was developed for the estimation of sinigrin in the prepared fraction. The data observed here indicate that sinigrin can be beneficial in treating prostate cancer possibly by inducing apoptosis.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*; Chromatography, Reverse-Phase
A stirred fluidized bed (SFB) ion exchange chromatography was successfully applied in the direct recovery of recombinant enhanced green fluorescent protein (EGFP) from the unclarified Escherichia coli homogenate. Optimal conditions for both adsorption and elution processes were determined from the packed-bed adsorption systems conducted at a small scale using the clarified cell homogenate. The maximal adsorption capacity and dissociation constant for EGFP-adsorbent complex were found to be 6.3 mg/mL and 1.3 × 10-3 mg/mL, respectively. In an optimal elution of EGFP with 0.2 M of NaCl solution (pH 9) and at 200 cm/h, the recovery percent of the EGFP was approximately 93%. The performances of SFB chromatography for direct recovery of EGFP was also evaluated under different loading volumes (50-200 mL) of crude cell homogenate. The single-step purification of EGFP by SFB recorded in a high yield (95-98%) and a satisfactory purification factor (~3 folds) of EGFP from the cell homogenate at 200 rpm of rotating speed.
Matched MeSH terms: Chromatography, Ion Exchange/instrumentation; Chromatography, Ion Exchange/methods*
A rapid and selective high-performance liquid chromatographic (HPLC) method for the simultaneous determination of the antifilarial drug UMF-078 (I) and its metabolites UMF-060 (II) and flubendazole (III) is described. After a simple extraction from whole blood, the compounds were determined by HPLC using a C18 Inertsil ODS-2 reversed-phase column with methanol-0.05M ammonium acetate (pH 4.0) as the mobile phase and ultraviolet detection at 291 nm. The average recoveries of I, II and III over the concentration range 20-500 ng ml-1 were 69.9 +/- 4.7, 85.6 +/- 4.4 and 85.1 +/- 6.0%, respectively. The minimum detectable concentrations in whole blood for I, II and III were 10, 7 and 7 ng ml-1, respectively. This method was found to be suitable for pharmacokinetic studies.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*; Chromatography, High Pressure Liquid/statistics & numerical data
Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).
Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Supercritical Fluid/methods*
The essential oil in leaves of Polygonum minus Huds., a local aromatic plant, were identified by a pipeline of gas chromatography (GC) techniques coupled with mass-spectrometry (MS), flame ionization detector (FID) and two dimensional gas chromatography time of flight mass spectrometry (GC x GC-TOF MS). A total of 48 compounds with a good match and high probability values were identified using this technique. Meanwhile, 42 compounds were successfully identified in this study using GC-MS, a significantly larger number than in previous studies. GC-FID was used in determining the retention indices of chemical components in P. minus essential oil. The result also showed the efficiency and reliability were greatly improved when chemometric methods and retention indices were used in identification and quantification of chemical components in plant essential oil.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry/instrumentation; Gas Chromatography-Mass Spectrometry/methods*
The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases.
Matched MeSH terms: Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Chromatography, Reverse-Phase
A simple micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of 2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF), 5-hydroxymethylfurfural (5-HMF), 2-furoic acid (2-FA) and 3-furoic acid (3-FA) in honey and vegetable oils is described. Parameters affecting the separation such as pH, buffer and surfactant concentrations, applied voltage, capillary temperature, injection time and capillary length were studied and optimized. The separation was carried out in normal polarity mode at 20 °C, 22 kV and using hydrodynamic injection (17 s). The separation was achieved in a bare fused-silica capillary (46 cm × 50 μm i.d.) with a background electrolyte of 75 mM phosphoric acid (pH 7.3), containing 200 mM of sodium dodecyl sulphate (SDS). The detection wavelengths were at 200 nm (2-FA and 3-FA) and 280 nm (2-F, 3-F, 5-MF, 5-HMF). The furfurals were well separated in less than 20 min. The method was validated in terms of linearity, limit of detection and quantitation, precision and recoveries. Calibration curves of the six furfurals were well correlated (r(2)>0.991) within the range 1-25 μg mL(-1). Relative standard deviations of intra- and inter-day migration times and corrected peak areas ≤9.96% were achieved. The limit of detection (signal:noise, 3) was 0.33-0.70 μg mL(-1) whereas the limit of quantitation (signal:noise, 10) was 1.00-2.12 μg mL(-1). The method was applied to the determination of furanic compounds in honeys and vegetable oils (palm, walnut, grape seed and rapeseed). The effects of thermal treatment and gamma irradiation on the formation of the furanic compounds in honey were also investigated.
This study is a result of an analysis of free and conjugated phytoestrogens daidzein, genistein, daidzin, genistin and coumesterol in human cord blood plasma using LCMS. Cord blood was collected from urban and rural populations of Malaysia (n=300) to establish a simple preliminary database on the levels of the analyzed compounds in the collected samples. The study also aimed to look at the levels of phytoestrogens in babies during birth as this may have a profound effect on the developmental process. The sample clean up was carried out by solid-phase extraction using C18 column and passed through DEAE sephadex gel before analysis by LCMS. The mean concentrations of total phytoestrogens were daidzein (1.4+/-2.9 ng/ml), genistein (3.7+/-2.8 ng/ml), daidzin (3.5+/-3.1 ng/ml), genistin (19.5+/-4.2 ng/ml) and coumesterol (3.3+/-3.3 ng/ml). Distribution of phytoestrogen was found to be higher in samples collected from rural areas compared to that of urban areas.
Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Gas Chromatography-Mass Spectrometry
In this study, the development and validation of a high-performance liquid chromatography (HPLC) assay for determination of repaglinide concentration in human plasma for pharmacokinetic studies is described. Plasma samples containing repaglinide and an internal standard, indomethacin were extracted with ethylacetate at pH 7.4. The recovery of repaglinide was 92%+/-55.31. Chromatographic separations were performed on Purospher STAR C-18 analytical column (4.8 mm x 150 mm; 5 microm particle size). The mobile phase composed of acetonitrile-ammonium formate (pH 2.7; 0.01 M) (60:40, v/v). The flow rate was 1 ml/min. The retention time for repaglinide and indomethacin were approximately 6.2 and 5.3 min, respectively. Calibration curves of repaglinide were linear in the concentration range of 20-200 ng/ml in plasma. The limits of detection and quantification were 10 ng/ml and 20 ng/ml, respectively. The inter-day precision was from 5.21 to 11.84% and the intra-day precision ranged from 3.90 to 6.67%. The inter-day accuracy ranged 89.95 to 105.75% and intra-day accuracy ranged from 92.37 to 104.66%. This method was applied to determine repaglinide concentration in human plasma samples for a pharmacokinetic study.
Matched MeSH terms: Chromatography, High Pressure Liquid/instrumentation; Chromatography, High Pressure Liquid/methods*
Direct recovery of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli homogenates via expanded bed adsorption chromatography (EBA) has been explored in this study. Streamline DEAE was selected as the anion exchanger to recover HBcAg from heat-treated and non-heat-treated unclarified feedstocks. The use of anion-exchanger for direct extraction of proteins from unclarified feedstock is not preferred due to lack of specificity of its ligand. In this study, thermal treatment of the unclarified feedstock at 60 degrees C has resulted in 1.2- and 1.8-fold increases in yield and purity of HBcAg, respectively, compared with that purified from non-heat-treated feedstock. Heating the crude feedstock has resulted in denaturation and precipitation of contaminants in the feedstock, hence reducing non-specific interactions between the cell debris and adsorbent. The selectivity of the anion-exchanger has also been increased as shown in the breakthrough curve obtained. Enzyme-linked immunosorbent assay showed that the antigenicity of the HBcAg from heat-treated unclarified feedstock is still preserved.
A total of 753 serum samples from 6 institutions in 3 countries (Malaysia, Indonesia and India) were used to evaluate an immunochromatographic rapid dipstick test, Brugia Rapid, for diagnosis of Brugia malayi infection. The samples comprised sera from 207 microfilaria-positive individuals and 546 individuals from filaria non-endemic areas. The latter consisted of 70 individuals with soil-transmitted helminth infections, 68 with other helminth infections, 238 with protozoan infections, 12 with bacterial and viral infections and 158 healthy individuals. The dipstick is prepared with a goat anti-mouse antibody control line and a B. malayi recombinant-antigen test line. First, the dipstick is dipped into a well containing diluted patient serum, thus allowing specific anti-filarial antibody in the serum to react with the recombinant antigen. Then the dipstick is placed into an adjacent well containing reconstituted anti-human IgG4-gold. After 10 min, development of 2 red-purplish lines denotes a positive result and one line indicates a negative reaction. The overall results of the evaluation showed 97% sensitivity, 99% specificity, 97% positive predictive value and 99% negative predictive value. Brugia Rapid is thus a promising diagnostic tool for detection of B. malayi infection, and would be especially useful for the brugian filariasis elimination programme.
Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
Heliotropium is one of the most important plant genera to have conventional folklore importance, and hence is a potential source of bioactive compounds. Thus, the present study was designed to explore the therapeutic potential of Heliotropium crispum Desf., a relatively under-explored medicinal plant species. Methanolic extracts prepared from a whole plant of H. crispum were studied for phytochemical composition and possible in vitro and in silico biological properties. Antioxidant potential was assessed via six different assays, and enzyme inhibition potential against key clinical enzymes involved in neurodegenerative diseases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), diabetes (α-amylase and α-glucosidase), and skin problems (tyrosinase) was assayed. Phytochemical composition was established via determination of the total bioactive contents and reverse phase ultra-high performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Chemical profiling revealed the tentative presence of 50 secondary metabolites. The plant extract exhibited significant inhibition against AChE and BChE enzymes, with values of 3.80 and 3.44 mg GALAE/g extract, respectively. Further, the extract displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 43.19 and 41.80 mg TE/g extract, respectively. In addition, the selected compounds were then docked against the tested enzymes, which have shown high inhibition affinity. To conclude, H. crispum was found to harbor bioactive compounds and showed potent biological activities which could be further explored for potential uses in nutraceutical and pharmaceutical industries, particularly as a neuroprotective agent.
Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Reverse-Phase*
A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
Matched MeSH terms: Chromatography, Ion Exchange/instrumentation*; Chromatography, Ion Exchange/methods*
A new extraction and cleanup procedure with gas chromatography was developed for the sensitive determination of acephate, dimethoate, malathion, diazinon, quinalphos, chlorpyrifos, profenofos, alpha-endosulfan, beta-endosulfan, chlorothalonil and carbaryl using 1-chloro-4-fluorobenzene as an internal standard in fruits and vegetables. Several extracting and eluting solvents for solid-phase extraction were investigated. The overall extracting solvent with a mixture of acetone:ethyl acetate:hexane (10:80:10, v/v/v) and a eluting solvent of 5% acetone in hexane used with the RPC18 cartridge gave the best recovery for all of the investigated pesticides, and minimized the interference from co-extractants. Under the optimal extraction and clean-up conditions, recoveries of 85 - 99% with RSD < 5.0% (n = 3) for most of the pesticides at the 0.02 - 0.5 mg/kg level were obtained. The limit of detection was between 0.005 - 0.01 mg/kg and the limit of quantification was 0.01 mg/kg. This analytical procedure was characterized with high accuracy and acceptable sensitivity to meet requirements for monitoring pesticides in crops.
A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.
Matched MeSH terms: Chromatography, High Pressure Liquid/economics; Chromatography, High Pressure Liquid/methods
The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Thin Layer/methods*