MATERIALS AND METHODS: This is a scoping review of articles published from January 2012 to November 2022. This review follows the PRISMA guideline. The articles were searched through Scopus and Web of Sciences using the keywords "motor control" and "nonspecific low back pain". After finding the articles, the information was extracted, including authors, year of publication, country, objective, type of study, and motor control analysis summary.
RESULTS: The search retrieved 1318 articles; however, after a thorough selection process, only eight articles were included for further review. The factors that affect motor control were related to trunk neuromuscular adaption, the precision of trunk control, motor control changes, motor abundance, and motor control impairment in the LBP population with or without comparison to healthy subjects.
CONCLUSION: Motor control in NSLBP is affected by various factors. The pain can lead to changes in motor behavior, alignment, postural control, proprioception, and stability strategy. If the changes happen for a long time, it will cause further structural and core control changes as an adaptation.
METHODS: The electronic literature search retrieved 61 studies from PubMed, MEDLINE, and ScienceDirect. After screening titles, abstracts, and keywords and reading through these articles, we identified 9 articles meeting all inclusion criteria, which were included for systematic review.
RESULTS: There was a significant difference in both clinical parameters in a short duration of a month after curcumin chips were placed as an adjunct to scaling and root planing as compared to the control. Local application of curcumin also results in slight to significant reduction in the red complex microorganisms.
CONCLUSION: This review suggested that local application of curcumin can be considered as a viable adjunct to mechanical debridement in periodontitis. However, further studies need to be conducted to establish its optimum dose, delivery method, and frequency in achieving the best clinical outcomes.
OBJECTIVE: This study aims to review the external and internal load performed by soccer referees in high-level competitions, to identify changes in these indicators over different periods as the competition progresses, and to analyze the standards for dividing speed zones and heart rate zones.
METHODS: Web of Science, PubMed, Scopus, and EBSCOhost were thoroughly searched. Grey literature sources and Google Scholar were also consulted, with a focus on analysing and comparing the physical demands of soccer referees at different phases of high-level matches.
RESULTS: A total of 14 manuscripts were included in this review. Studies revealed that the total distance (TD) covered by referees during a full match ranged from 9 to 12 km. High-intensity running (HIR) constituted 2.0-18.7% of TD, accounting for approximately 38% of total time (TT). Referees reached 80-100% of their maximal heart rate during matches. The standards for dividing speed zones and heart rate zones varied among the selected studies.
DISCUSSION: This systematic review aimed to provide a comprehensive overview of referees' physical demands (e.g., TD, HIR, and HR) to offer practitioners valuable biological data for training and competition preparation. The lack of uniform criteria for dividing speed and heart rate zones limits data collection, thereby affecting the reporting of distances covered at different exercise intensities.
METHODS: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries.
RESULTS: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population.
CONCLUSIONS: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome.
FUNDING: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.