Displaying publications 221 - 240 of 743 in total

Abstract:
Sort:
  1. Looi QH, Foo JB, Lim MT, Le CF, Show PL
    Int Rev Immunol, 2018;37(5):266-276.
    PMID: 30252547 DOI: 10.1080/08830185.2018.1500570
    Despite of ongoing research programs and numerous clinical trials, seasonal influenza epidemics remain a major concern globally. Vaccination remains the most effective method to prevent influenza infection. However, current flu vaccines have several limitations, including limited vaccine capacity, long production times, inconsistence efficacy in certain populations, and lack of a "universal" solution. Different next-generation approaches such as cell line-based culture, reverse genetics, and virus expression technology are currently under development to address the aforementioned challenges in conventional vaccine manufacture pipeline. Such approaches hope for safe and scalable production, induce broad-spectrum immunity, create premade libraries of vaccine strains, and target nonvariable regions of antigenic proteins for "universal" vaccination. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
    Matched MeSH terms: Influenza Vaccines
  2. McNeil HC, Jefferies JM, Clarke SC
    Expert Rev Anti Infect Ther, 2015 06;13(6):705-14.
    PMID: 25962101 DOI: 10.1586/14787210.2015.1033401
    Worldwide bacterial meningitis accounts for more than one million cases and 135,000 deaths annually. Profound, lasting neurological complications occur in 9-25% of cases. This review confirms the greatest risk from bacterial meningitis is in early life in Malaysia. Much of the disease burden can be avoided by immunization, particularly against Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae. Despite inclusion of the Hib vaccine in the National Immunisation Programme and the licensure of pneumococcal vaccines, these two species are the main contributors to bacterial meningitis in Malaysia, with Neisseria meningitidis and Mycobacterium tuberculosis, causing a smaller proportion of disease. The high Hib prevalence may partly be due to dated, small-scale studies limiting the understanding of the current epidemiological situation. This highlights the need for larger, better quality surveillance from Malaysia to evaluate the success of Hib immunization and to help guide immunization policy for vaccines against S. pneumoniae and N. meningitidis.
    Matched MeSH terms: Haemophilus Vaccines/therapeutic use*; Pneumococcal Vaccines/therapeutic use*
  3. Iversen OE, Miranda MJ, Ulied A, Soerdal T, Lazarus E, Chokephaibulkit K, et al.
    JAMA, 2016 12 13;316(22):2411-2421.
    PMID: 27893068 DOI: 10.1001/jama.2016.17615
    Human papillomavirus (HPV) infections cause anogenital cancers and warts. The 9-valent HPV vaccine provides protection against 7 high-risk types of HPV responsible for 90% of cervical cancers and 2 other HPV types accounting for 90% of genital warts.
    Matched MeSH terms: Papillomavirus Vaccines/administration & dosage*; Papillomavirus Vaccines/adverse effects; Papillomavirus Vaccines/immunology*
  4. Bahadoran A, Moeini H, Bejo MH, Hussein MZ, Omar AR
    J Pharm Pharm Sci, 2016 Jul-Sep;19(3):325-338.
    PMID: 27806247 DOI: 10.18433/J3G31Q
    PURPOSE: In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed.

    METHODS: First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry.

    RESULTS: TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05).

    CONCLUSIONS: The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
    Matched MeSH terms: Vaccines, DNA/genetics; Vaccines, DNA/pharmacokinetics*; Vaccines, DNA/chemistry*
  5. Wan Omar Abdullah, Lokman Mohd Noh
    MyJurnal
    Malaria remains one of the most important infectious diseases worldwide considering that 40% of the world’s population live in health risk areas and millions of febrile episodes due to malaria infection occur annually in children under the age of five in Africa alone and almost 3 million patients, primarily children, die each year. Among the various measures envisaged, to contain the disease, the concept of a vaccine to protect humans against malaria appears particularly attractive. The development of an effective malaria vaccine represents one of the most important approaches to provide cost-effective intervention, in addition to currently available malaria control strategies. Here, we review malaria as a public health problem and the status and promise in malaria vaccine development.
    Matched MeSH terms: Malaria Vaccines
  6. Wan Mansor, H., Wan Mohd. Sulaili, W.S., Khalid, Y., Hamzah, A.M., Abdul Haris, M., Hani, M.H., et al.
    MyJurnal
    A study was conducted in Kelantan, Mabysia, in the year 2001 , to assess the typhoid reporting coverage and timeliness, and to estimate the annual incidence. Cases were persons given the diagnosis of typhoid clinically, and conhrmed cases are those with positive laboratory results. In all, 174/252 (69%) cases (95% CI = 63%-75%) were reported, ofwhich 89/131 (83%) within 7 days of diagnosis. The estimated annual typhoid incidence in Kelantan is 37/ 1 00,000.
    Matched MeSH terms: Typhoid-Paratyphoid Vaccines
  7. Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ
    Pathog Glob Health, 2018 10;112(7):387-394.
    PMID: 30332344 DOI: 10.1080/20477724.2018.1536854
    Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
    Matched MeSH terms: Vaccines, Synthetic/immunology; Protozoan Vaccines/immunology*
  8. AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, et al.
    Curr Mol Pharmacol, 2019;12(2):83-104.
    PMID: 30474542 DOI: 10.2174/1874467212666181126151948
    BACKGROUND: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

    OBJECTIVE: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

    Matched MeSH terms: Bacterial Vaccines/immunology*; Vaccines, Subunit/immunology
  9. Wang C, Zainal NS, Chai SJ, Dickie J, Gan CP, Zulaziz N, et al.
    Front Immunol, 2021;12:763086.
    PMID: 34733290 DOI: 10.3389/fimmu.2021.763086
    HPV-independent head and neck squamous cell carcinoma (HNSCC) is a common cancer globally. The overall response rate to anti-PD1 checkpoint inhibitors (CPIs) in HNSCC is ~16%. One major factor influencing the effectiveness of CPI is the level of tumor infiltrating T cells (TILs). Converting TILlow tumors to TILhigh tumors is thus critical to improve clinical outcome. Here we describe a novel DNA vaccines to facilitate the T-cell infiltration and control tumor growth. We evaluated the expression of target antigens and their respective immunogenicity in HNSCC patients. The efficacy of DNA vaccines targeting two novel antigens were evaluated with or without CPI using a syngeneic model. Most HNSCC patients (43/44) co-expressed MAGED4B and FJX1 and their respective tetramer-specific T cells were in the range of 0.06-0.12%. In a preclinical model, antigen-specific T cells were induced by DNA vaccines and increased T cell infiltration into the tumor, but not MDSC or regulatory T cells. The vaccines inhibited tumor growth and improved the outcome alone and upon combination with anti-PD1 and resulted in tumor clearance in approximately 75% of mice. Pre-existence of MAGED4B and FJX1-reactive T cells in HNSCC patients suggests that these widely expressed antigens are highly immunogenic and could be further expanded by vaccination. The DNA vaccines targeting these antigens induced robust T cell responses and with the anti-PD1 antibody conferring excellent tumor control. This opens up an opportunity for combination immunotherapy that might benefit a wider population of HNSCC patients in an antigen-specific manner.
    Matched MeSH terms: Vaccines, DNA/immunology*; Cancer Vaccines/immunology*
  10. Goh Cy C, Teng Keat C, Su Kien C, Ai Sim G
    J R Coll Physicians Edinb, 2022 Jun;52(2):113-116.
    PMID: 36146992 DOI: 10.1177/14782715221103660
    The accelerated development of various vaccines against COVID-19 was a global effort to curb the COVID-19 pandemic. As a result, several unique vaccine-related adverse events were observed. Vaccine-induced immune thrombotic thrombocytopenia (VITT) has been recognised as a clinically distinct entity with a predisposition for thrombosis at unusual sites with laboratory features of consumptive coagulopathy in addition to anti-PF4 assay seropositivity. The majority of cases reported were associated with adenoviral-based vectors such as ChAdOx1 nCoV-19 (Oxford-AstraZeneca) and Janssen Ad26.COV2.S (Johnson & Johnson). In our online search, we have not found any reports to date of VITT associated with Pfizer-BioNTech Comirnaty mRNA vaccine. We report a case of a previously healthy 76-year-old man who received his first-dose Pfizer Comirnaty vaccine on 11 October 2021 who developed left upper limb swelling on day 2 post-vaccination, which progressively worsened on day 4 post-vaccination. He was confirmed to have left axillary vein thrombosis on computer tomography arteriography/computed tomography venography of left upper limb on day 5 post-vaccination with new onset aphasia with unilateral limb weakness on day 8 post-vaccination. Magnetic resonance imaging/magnetic resonance angiography of the brain confirmed acute left middle cerebral artery thrombosis with infarction. Blood investigations showed thrombocytopenia, elevated D-dimer, hypofibrinogenemia in addition to his unusual sites of thrombosis involving both arterial and venous circulation. His IgG ELISA assay for anti-PF4 antibody was positive.
    Matched MeSH terms: Vaccines, Synthetic
  11. Rafidah O, Zamri-Saad M, Shahirudin S, Nasip E
    Vet Rec, 2012 Aug 18;171(7):175.
    PMID: 22815208 DOI: 10.1136/vr.100403
    The efficacy of an intranasal haemorrhagic septicaemia vaccine containing live gdhA derivative Pasteurella multocida B:2 was tested in buffaloes in Sabah. Sixty buffaloes, kept grazing in the field with minimal human intervention were devided into three groups of 20 buffaloes per group. Buffaloes of group 1 were exposed intranasal to 5 ml vaccine containing 10(6) CFU/ml of live gdhA derivative P multocida B:2. Buffaloes of group 2 were not exposed to the vaccine but exposed to PBS and were allowed to commingle and graze in the same field as the buffaloes of group 1 while buffaloes of group 3 were similarly exposed to PBS and were grazing separately. Booster was on group 1, two weeks later. Twelve months after the first vaccination, three buffaloes from each group were brought into the experimental house and challenged subcutaneously with 10(9) CFU/ml of live wild-type P multocida B:2. All challenged buffaloes of groups 1 and 2 survived with only mild, transient signs while all control unvaccinated buffaloes developed severe signs of haemorrhagic septicaemia and were euthanased between 28 hours and 38 hours postchallenge with signs and lesions typical of haemorrhagic septicaemia. These data showed that the gdhA mutant strain, given intranasally as two doses two weeks apart, successfully induced systemic immunity in exposed buffaloes and also led to spread of vaccine strain to the in-contact animals, where it acted as an effective live vaccine to protect both exposed buffaloes and in-contact buffaloes against challenge with the virulent parent strain.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage*; Vaccines, Attenuated/administration & dosage
  12. Ismail MI, Tan SW, Hair-Bejo M, Omar AR
    J Vet Sci, 2020 Nov;21(6):e76.
    PMID: 33263227 DOI: 10.4142/jvs.2020.21.e76
    BACKGROUND: The predominant infectious bronchitis virus (IBV) strains detected in chickens in Malaysia are the Malaysian variant (MV) and QX-like, which are associated with respiratory distress, nephropathy, and high mortality. On the other hand, the antigenic relatedness and efficacy of IBV vaccines against these 2 field IBV strains are not well characterized.

    OBJECTIVES: This study aimed to determine the antigen relatedness and efficacy of different IB vaccine strains against a challenge with MV and QX-like strains.

    METHODS: The antigen relatedness and the ability of different IB vaccine strains in conferring protection against MV and QX-like were assessed based on the clinical signs, macroscopic lesions, and ciliary activity.

    RESULTS: The MV strain IBS037A/2014 showed minor antigenic subtype differences with the vaccine virus Mass H120 and 4/91 strains but showed major antigenic subtype differences with the K2 strain. The Malaysian QX-like strain IBS130/2015 showed major antigenic subtype differences with the MV strain IBS037A/2014 and the vaccine strains except for K2. Chickens vaccinated once with Mass (H120) or with non-Mass (4/91 and K2) developed antibody responses with the highest antibody titer detected in the groups vaccinated with H120 and 4/91. The mean ciliary activities of the vaccinated chickens were between 56 to 59% and 48 to 52% in chickens challenged with IBS037A/2014 and IBS130/2015, respectively. The vaccinated and challenged birds showed mild to severe lesions in the lungs and kidneys.

    CONCLUSIONS: Despite the minor antigenic subtype differences, a single inoculation with Mass or non-Mass vaccines could not protect against the MV IBS037A/2014 and QX-like IBS130/2015.

    Matched MeSH terms: Vaccines, Attenuated/administration & dosage*; Viral Vaccines/administration & dosage*
  13. Pang T, Bhutta ZA, Finlay BB, Altwegg M
    Trends Microbiol, 1995 Jul;3(7):253-5.
    PMID: 7551636
    Matched MeSH terms: Typhoid-Paratyphoid Vaccines
  14. Yee PT, Poh CL
    Viruses, 2015 Dec 30;8(1).
    PMID: 26729152 DOI: 10.3390/v8010001
    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
    Matched MeSH terms: Viral Vaccines/genetics; Viral Vaccines/immunology*
  15. Lim SS, Othman RY
    Korean J Parasitol, 2014 Dec;52(6):581-93.
    PMID: 25548409 DOI: 10.3347/kjp.2014.52.6.581
    Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
    Matched MeSH terms: Protozoan Vaccines/immunology; Protozoan Vaccines/isolation & purification
  16. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, et al.
    Lancet, 2014 Oct 11;384(9951):1358-65.
    PMID: 25018116 DOI: 10.1016/S0140-6736(14)61060-6
    An estimated 100 million people have symptomatic dengue infection every year. This is the first report of a phase 3 vaccine efficacy trial of a candidate dengue vaccine. We aimed to assess the efficacy of the CYD dengue vaccine against symptomatic, virologically confirmed dengue in children.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/adverse effects
  17. Lam SK
    Expert Rev Vaccines, 2013 Sep;12(9):995-1010.
    PMID: 24053394 DOI: 10.1586/14760584.2013.824712
    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/immunology*
  18. Noraini O, Sabri MY, Siti-Zahrah A
    J Aquat Anim Health, 2013 Jun;25(2):142-8.
    PMID: 23724958 DOI: 10.1080/08997659.2013.781553
    An initial evaluation of spray vaccination was carried out with 60 hybrid Red Tilapia Oreochromis spp., divided into three groups that consisted of 10 fish per group with duplicates. The formalin-killed cells (FKCs) of Streptococcus agalactiae were administered once to group 1 by spray and once daily for five consecutive days to group 2. Group 3 remained as the untreated control group and was sprayed with normal saline. A booster was given twice to all the groups, once at the second week and again at the fourth week after the first vaccination. After this initial evaluation, a challenge study was conducted with 40 tilapia divided into two groups that consisted of 10 fish per group with duplicates. Group 1 was vaccinated with FKCs of S. agalactiae by a single spray administration while group 2 remained as the untreated control group. A booster was given twice using the same protocol as in the initial evaluation. After 6 weeks, fish from one of the duplicate tanks from each of groups 1 and 2 were challenged with pathogenic S. agalactiae by intraperitoneal (IP) injection, while fish in another tank were challenged through immersion. Based on the observations, serum immunoglobulin M (IgM) levels were significantly higher (P < 0.05) in the challenged fish than in the either the preexposed fish or the control group 1 week after the initial exposure. However, no significant differences (P > 0.05) were noted between challenged groups 1 and 2. In addition, no significant differences (P > 0.05) were observed between the frequencies of exposure. The mucus IgM level, however, remained high after each booster until the end of the 8-week study period. Meanwhile, serum IgM levels decreased after the challenge. A higher percentage of survival was noted for fish challenged through immersion (80%) compared with IP injection (70%). These results suggested that single spray exposure was able to induce IgM, which gave moderate to high protection during the challenge study.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*
  19. Gupta V, Dawood FS, Muangchana C, Lan PT, Xeuatvongsa A, Sovann L, et al.
    PLoS One, 2012;7(12):e52842.
    PMID: 23285200 DOI: 10.1371/journal.pone.0052842
    Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.
    Matched MeSH terms: Influenza Vaccines/economics*; Influenza Vaccines/immunology
  20. Riewpaiboon A, Sooksriwong C, Chaiyakunapruk N, Tharmaphornpilas P, Techathawat S, Rookkapan K, et al.
    Public Health, 2015 Jul;129(7):899-906.
    PMID: 26027451 DOI: 10.1016/j.puhe.2015.04.016
    This study aimed to conduct an economic analysis of the transition of the conventional vaccine supply and logistics systems to the vendor managed inventory (VMI) system in Thailand.
    Matched MeSH terms: Vaccines/economics*; Vaccines/supply & distribution*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links