METHODS: A within-subject, repeated-measures, crossover randomized controlled design was conducted among 25 participants (7 males and 18 females) with chronic nonspecific low back pain. All the participants received 3 different types of experimental interventions, which included LPST, the passive automated cycling intervention, and the control intervention randomly, with 48 hours between the sessions. The pressure pain threshold (PPT), hot-cold pain threshold, and pain intensity were estimated before and after the interventions.
RESULTS: Repeated-measures analysis of variance showed that LPST provided therapeutic effects as it improved the PPT beyond the placebo and control interventions (P < 0.01). The pain intensity under the LPST condition was significantly better than that under the passive automated cycling intervention and controlled intervention (P < 0.001). Heat pain threshold under the LPST condition also showed a significant trend of improvement beyond the control (P < 0.05), but no significant effects on cold pain threshold were evident.
CONCLUSIONS: Lumbopelvic stabilization training may provide therapeutic effects by inducing pain modulation through an improvement in the pain threshold and reduction in pain intensity. LPST may be considered as part of the management programs for treatment of chronic low back pain.
OBJECTIVES: This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system.
METHODS: The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset.
RESULTS: The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069.
CONCLUSION: The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS.
BACKGROUND AND OBJECTIVE: Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement.
METHODS: An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis.
RESULTS: A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification.
CONCLUSIONS: The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide.
RESULTS: During 1980-2014, the FIs of NPK chemical fertilizers in China showed a significant growing trend. After reaching the highest value of 339 kg ha-1 in 2014, FIs were reduced to 303 kg ha-1 in 2019, higher than the 225 kg ha-1 maximum safe usage internationally recognized. Meanwhile, the pattern of change of FAE was one of 'decreasing to increasing', with values of 1 in 1980, 0.66 in 2003, and 0.80 in 2019. FIE basically showed an increasing trend, which could be divided into three stages: the first stage of low efficiency during 1980-2009, the second stage of medium efficiency after 2010, and the third stage of high efficiency after 2018.
CONCLUSION: From 1980 until 2019, a reduction of FAE from 1 to 0.80 with an average of 0.75 was observed in China. FIE was found between 0.65 and 0.85 and had the potential of upgrading by 15-35%. Therefore, China needs to improve the fertilizer use efficiency in order to strive for negative growth of chemical fertilizer intensity and ecological agriculture construction. © 2022 Society of Chemical Industry.
METHODS: A single-blinded placebo-controlled trial of surgical intervention triggered when CM amplitude dropped by at least 30% of a prior maximum amplitude during cochlear implantation. Intraoperative electrocochleography was recorded in 60 adults implanted with Cochlear Ltd's Thin Straight Electrode, half randomly assigned to a control group and half to an interventional group. The surgical intervention was to withdraw the electrode in ½-mm steps to recover CM amplitude. The primary outcome was hearing preservation 3 months following implantation, with secondary outcomes of speech-in-noise reception thresholds by group or CM outcome, and depth of implantation.
RESULTS: Sixty patients were recruited; neither pre-operative audiometry nor speech reception thresholds were significantly different between groups. Post-operatively, hearing preservation was significantly better in the interventional group. This was the case in absolute difference (median of 30 dB for control, 20 dB for interventional, χ² = 6.2, p = .013), as well as for relative difference (medians of 66% for the control, 31% for the interventional, χ² = 5.9, p = .015). Speech-in-noise reception thresholds were significantly better in patients with no CM drop at any point during insertion compared with patients with a CM drop; however, those with successfully recovered CMs after an initial drop were not significantly different (median gain required for speech reception score of 50% above noise of 6.9 dB for no drop, 8.6 for recovered CM, and 9.8 for CM drop, χ² = 6.8, p = .032). Angular insertion depth was not significantly different between control and interventional groups.
CONCLUSIONS: This is the first demonstration that surgical intervention in response to intraoperative hearing monitoring can save residual hearing during cochlear implantation.