Displaying publications 241 - 260 of 459 in total

Abstract:
Sort:
  1. Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, et al.
    Fungal Syst Evol, 2020 Dec;6:157-231.
    PMID: 32904192 DOI: 10.3114/fuse.2020.06.09
    Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study. New genera are: Italiofungus (based on Italiofungus phillyreae) on leaves of Phillyrea latifolia (Italy); Neolamproconium (based on Neolamproconium silvestre) on branch of Tilia sp. (Ukraine); Neosorocybe (based on Neosorocybe pini) on trunk of Pinus sylvestris (Ukraine); Nothoseptoria (based on Nothoseptoria caraganae) on leaves of Caragana arborescens (Russia); Pruniphilomyces (based on Pruniphilomyces circumscissus) on Prunus cerasus (Russia); Vesiculozygosporium (based on Vesiculozygosporium echinosporum) on leaves of Muntingia calabura (Malaysia); Longiseptatispora (based on Longiseptatispora curvata) on leaves of Lonicera tatarica (Russia). New species are: Barrmaelia serenoae on leaf of Serenoa repens (USA); Chaetopsina gautengina on leaves of unidentified grass (South Africa); Chloridium pini on fallen trunk of Pinus sylvestris (Ukraine); Cadophora fallopiae on stems of Reynoutria sachalinensis (Poland); Coleophoma eucalyptigena on leaf litter of Eucalyptus sp. (Spain); Cylindrium corymbiae on leaves of Corymbia maculata (Australia); Diaporthe tarchonanthi on leaves of Tarchonanthus littoralis (South Africa); Elsinoe eucalyptorum on leaves of Eucalyptus propinqua (Australia); Exophiala quercina on dead wood of Quercus sp., (Germany); Fusarium californicum on cambium of budwood of Prunus dulcis (USA); Hypomyces gamsii on wood of Alnus glutinosa (Ukraine); Kalmusia araucariae on leaves of Araucaria bidwillii (USA); Lectera sambuci on leaves of Sambucus nigra (Russia); Melanomma populicola on fallen twig of Populus canadensis (Netherlands), Neocladosporium syringae on branches of Syringa vulgarishorus (Ukraine); Paraconiothyrium iridis on leaves of Iris pseudacorus (Ukraine); Pararoussoella quercina on branch of Quercus robur (Ukraine); Phialemonium pulveris from bore dust of deathwatch beetle (France); Polyscytalum pinicola on needles of Pinus tecunumanii (Malaysia); Acervuloseptoria fraxini on Fraxinus pennsylvanica (Russia); Roussoella arundinacea on culms of Arundo donax (Spain); Sphaerulina neoaceris on leaves of Acer negundo (Russia); Sphaerulina salicicola on leaves of Salix fragilis (Russia); Trichomerium syzygii on leaves of Syzygium cordatum (South Africa); Uzbekistanica vitis-viniferae on dead stem of Vitis vinifera (Ukraine); Vermiculariopsiella eucalyptigena on leaves of Eucalyptus sp. (Australia).
  2. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al.
    Lancet, 2017 Dec 16;390(10113):2643-2654.
    PMID: 28943267 DOI: 10.1016/S0140-6736(17)31634-3
    BACKGROUND: Physical activity has a protective effect against cardiovascular disease (CVD) in high-income countries, where physical activity is mainly recreational, but it is not known if this is also observed in lower-income countries, where physical activity is mainly non-recreational. We examined whether different amounts and types of physical activity are associated with lower mortality and CVD in countries at different economic levels.

    METHODS: In this prospective cohort study, we recruited participants from 17 countries (Canada, Sweden, United Arab Emirates, Argentina, Brazil, Chile, Poland, Turkey, Malaysia, South Africa, China, Colombia, Iran, Bangladesh, India, Pakistan, and Zimbabwe). Within each country, urban and rural areas in and around selected cities and towns were identified to reflect the geographical diversity. Within these communities, we invited individuals aged between 35 and 70 years who intended to live at their current address for at least another 4 years. Total physical activity was assessed using the International Physical Activity Questionnaire (IPQA). Participants with pre-existing CVD were excluded from the analyses. Mortality and CVD were recorded during a mean of 6·9 years of follow-up. Primary clinical outcomes during follow-up were mortality plus major CVD (CVD mortality, incident myocardial infarction, stroke, or heart failure), either as a composite or separately. The effects of physical activity on mortality and CVD were adjusted for sociodemographic factors and other risk factors taking into account household, community, and country clustering.

    FINDINGS: Between Jan 1, 2003, and Dec 31, 2010, 168 916 participants were enrolled, of whom 141 945 completed the IPAQ. Analyses were limited to the 130 843 participants without pre-existing CVD. Compared with low physical activity (<600 metabolic equivalents [MET] × minutes per week or <150 minutes per week of moderate intensity physical activity), moderate (600-3000 MET × minutes or 150-750 minutes per week) and high physical activity (>3000 MET × minutes or >750 minutes per week) were associated with graded reduction in mortality (hazard ratio 0·80, 95% CI 0·74-0·87 and 0·65, 0·60-0·71; p<0·0001 for trend), and major CVD (0·86, 0·78-0·93; p<0·001 for trend). Higher physical activity was associated with lower risk of CVD and mortality in high-income, middle-income, and low-income countries. The adjusted population attributable fraction for not meeting the physical activity guidelines was 8·0% for mortality and 4·6% for major CVD, and for not meeting high physical activity was 13·0% for mortality and 9·5% for major CVD. Both recreational and non-recreational physical activity were associated with benefits.

    INTERPRETATION: Higher recreational and non-recreational physical activity was associated with a lower risk of mortality and CVD events in individuals from low-income, middle-income, and high-income countries. Increasing physical activity is a simple, widely applicable, low cost global strategy that could reduce deaths and CVD in middle age.

    FUNDING: Population Health Research Institute, the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, Ontario SPOR Support Unit, Ontario Ministry of Health and Long-Term Care, AstraZeneca, Sanofi-Aventis, Boehringer Ingelheim, Servier, GSK, Novartis, King Pharma, and national and local organisations in participating countries that are listed at the end of the Article.
  3. Iaccarino C, Kolias A, Adelson PD, Rubiano AM, Viaroli E, Buki A, et al.
    Acta Neurochir (Wien), 2021 02;163(2):423-440.
    PMID: 33354733 DOI: 10.1007/s00701-020-04663-5
    BACKGROUND: Due to the lack of high-quality evidence which has hindered the development of evidence-based guidelines, there is a need to provide general guidance on cranioplasty (CP) following traumatic brain injury (TBI), as well as identify areas of ongoing uncertainty via a consensus-based approach.

    METHODS: The international consensus meeting on post-traumatic CP was held during the International Conference on Recent Advances in Neurotraumatology (ICRAN), in Naples, Italy, in June 2018. This meeting was endorsed by the Neurotrauma Committee of the World Federation of Neurosurgical Societies (WFNS), the NIHR Global Health Research Group on Neurotrauma, and several other neurotrauma organizations. Discussions and voting were organized around 5 pre-specified themes: (1) indications and technique, (2) materials, (3) timing, (4) hydrocephalus, and (5) paediatric CP.

    RESULTS: The participants discussed published evidence on each topic and proposed consensus statements, which were subject to ratification using anonymous real-time voting. Statements required an agreement threshold of more than 70% for inclusion in the final recommendations.

    CONCLUSIONS: This document is the first set of practical consensus-based clinical recommendations on post-traumatic CP, focusing on timing, materials, complications, and surgical procedures. Future research directions are also presented.

  4. Davies TW, Kelly E, van Gassel RJJ, van de Poll MCG, Gunst J, Casaer MP, et al.
    Crit Care, 2023 Nov 20;27(1):450.
    PMID: 37986015 DOI: 10.1186/s13054-023-04729-7
    BACKGROUND: CONCISE is an internationally agreed minimum set of outcomes for use in nutritional and metabolic clinical research in critically ill adults. Clinicians and researchers need to be aware of the clinimetric properties of these instruments and understand any limitations to ensure valid and reliable research. This systematic review and meta-analysis were undertaken to evaluate the clinimetric properties of the measurement instruments identified in CONCISE.

    METHODS: Four electronic databases were searched from inception to December 2022 (MEDLINE via Ovid, EMBASE via Ovid, CINAHL via Healthcare Databases Advanced Search, CENTRAL via Cochrane). Studies were included if they examined at least one clinimetric property of a CONCISE measurement instrument or recognised variation in adults ≥ 18 years with critical illness or recovering from critical illness in any language. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for systematic reviews of Patient-Reported Outcome Measures was used. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were used in line with COSMIN guidance. The COSMIN checklist was used to evaluate the risk of bias and the quality of clinimetric properties. Overall certainty of the evidence was rated using a modified Grading of Recommendations, Assessment, Development and Evaluation approach. Narrative synthesis was performed and where possible, meta-analysis was conducted.

    RESULTS: A total of 4316 studies were screened. Forty-seven were included in the review, reporting data for 12308 participants. The Short Form-36 Questionnaire (Physical Component Score and Physical Functioning), sit-to-stand test, 6-m walk test and Barthel Index had the strongest clinimetric properties and certainty of evidence. The Short Physical Performance Battery, Katz Index and handgrip strength had less favourable results. There was limited data for Lawson Instrumental Activities of Daily Living and the Global Leadership Initiative on Malnutrition criteria. The risk of bias ranged from inadequate to very good. The certainty of the evidence ranged from very low to high.

    CONCLUSIONS: Variable evidence exists to support the clinimetric properties of the CONCISE measurement instruments. We suggest using this review alongside CONCISE to guide outcome selection for future trials of nutrition and metabolic interventions in critical illness.

    TRIAL REGISTRATION:  PROSPERO (CRD42023438187). Registered 21/06/2023.

  5. Sun P, Hu SB, Cheng X, Li M, Guo B, Song ZF, et al.
    Hernia, 2015 Apr;19 Suppl 1:S157-65.
    PMID: 26518794 DOI: 10.1007/BF03355344
  6. Jayasooriya S, Stolbrink M, Khoo EM, Sunte IT, Awuru JI, Cohen M, et al.
    Int J Tuberc Lung Dis, 2023 Sep 01;27(9):658-667.
    PMID: 37608484 DOI: 10.5588/ijtld.23.0203
    BACKGROUND: The aim of these clinical standards is to aid the diagnosis and management of asthma in low-resource settings in low- and middle-income countries (LMICs).METHODS: A panel of 52 experts in the field of asthma in LMICs participated in a two-stage Delphi process to establish and reach a consensus on the clinical standards.RESULTS: Eighteen clinical standards were defined: Standard 1, Every individual with symptoms and signs compatible with asthma should undergo a clinical assessment; Standard 2, In individuals (>6 years) with a clinical assessment supportive of a diagnosis of asthma, a hand-held spirometry measurement should be used to confirm variable expiratory airflow limitation by demonstrating an acute response to a bronchodilator; Standard 3, Pre- and post-bronchodilator spirometry should be performed in individuals (>6 years) to support diagnosis before treatment is commenced if there is diagnostic uncertainty; Standard 4, Individuals with an acute exacerbation of asthma and clinical signs of hypoxaemia or increased work of breathing should be given supplementary oxygen to maintain saturation at 94-98%; Standard 5, Inhaled short-acting beta-2 agonists (SABAs) should be used as an emergency reliever in individuals with asthma via an appropriate spacer device for metered-dose inhalers; Standard 6, Short-course oral corticosteroids should be administered in appropriate doses to individuals having moderate to severe acute asthma exacerbations (minimum 3-5 days); Standard 7, Individuals having a severe asthma exacerbation should receive emergency care, including oxygen therapy, systemic corticosteroids, inhaled bronchodilators (e.g., salbutamol with or without ipratropium bromide) and a single dose of intravenous magnesium sulphate should be considered; Standard 8, All individuals with asthma should receive education about asthma and a personalised action plan; Standard 9, Inhaled medications (excluding dry-powder devices) should be administered via an appropriate spacer device in both adults and children. Children aged 0-3 years will require the spacer to be coupled to a face mask; Standard 10, Children aged <5 years with asthma should receive a SABA as-needed at step 1 and an inhaled corticosteroid (ICS) to cover periods of wheezing due to respiratory viral infections, and SABA as-needed and daily ICS from step 2 upwards; Standard 11, Children aged 6-11 years with asthma should receive an ICS taken whenever an inhaled SABA is used; Standard 12, All adolescents aged 12-18 years and adults with asthma should receive a combination inhaler (ICS and rapid onset of action long-acting beta-agonist [LABA] such as budesonide-formoterol), where available, to be used either as-needed (for mild asthma) or as both maintenance and reliever therapy, for moderate to severe asthma; Standard 13, Inhaled SABA alone for the management of patients aged >12 years is not recommended as it is associated with increased risk of morbidity and mortality. It should only be used where there is no access to ICS.The following standards (14-18) are for settings where there is no access to inhaled medicines. Standard 14, Patients without access to corticosteroids should be provided with a single short course of emergency oral prednisolone; Standard 15, Oral SABA for symptomatic relief should be used only if no inhaled SABA is available. Adjust to the individual's lowest beneficial dose to minimise adverse effects; Standard 16, Oral leukotriene receptor antagonists (LTRA) can be used as a preventive medication and is preferable to the use of long-term oral systemic corticosteroids; Standard 17, In exceptional circumstances, when there is a high risk of mortality from exacerbations, low-dose oral prednisolone daily or on alternate days may be considered on a case-by-case basis; Standard 18. Oral theophylline should be restricted for use in situations where it is the only bronchodilator treatment option available.CONCLUSION: These first consensus-based clinical standards for asthma management in LMICs are intended to help clinicians provide the most effective care for people in resource-limited settings.
  7. Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, et al.
    Persoonia, 2023 Jun;51:280-417.
    PMID: 38665977 DOI: 10.3767/persoonia.2023.51.08
    Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.
  8. Crous PW, Wingfield MJ, Burgess TI, Hardy GE, Crane C, Barrett S, et al.
    Persoonia, 2016 12;37:218-403.
    PMID: 28232766 DOI: 10.3767/003158516X694499
    Novel species of fungi described in this study include those from various countries as follows: Australia: Apiognomonia lasiopetali on Lasiopetalum sp., Blastacervulus eucalyptorum on Eucalyptus adesmophloia, Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp., Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, Elsinoë eelemani on Melaleuca alternifolia, Elsinoë eucalyptigena on Eucalyptus kingsmillii, Elsinoë preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor, Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp., Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agave sp., Phlogicylindrium mokarei on Eucalyptus sp., Phyllosticta acaciigena on Acacia suaveolens, Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp., Readeriella lehmannii on Eucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri, Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp., Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae on Hakea sp., and Teichospora kingiae on Kingia australis.Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks, Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, and Synnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata.France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae, Rubikia evansii and Torula acaciae (all on Acacia koa).India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil. La Réunion: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena on Eucalyptus grandis × pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl. Eucalyptostroma gen. nov.) on Eucalyptus pellita, Melanconiella syzygii on Syzygium sp., Mycophilomyces periconiae (incl. Mycophilomyces gen. nov.) as hyperparasite on Periconia on leaves of Albizia falcataria, Synnemadiella eucalypti (incl. Synnemadiella gen. nov.) on Eucalyptus pellita, and Teichospora nephelii on Nephelium lappaceum.Mexico: Aspergillus bicephalus from soil. New Zealand: Aplosporella sophorae on Sophora microphylla, Libertasomyces platani on Platanus sp., Neothyronectria sophorae (incl. Neothyronectria gen. nov.) on Sophora microphylla, Parastagonospora phoenicicola on Phoenix canariensis, Phaeoacremonium pseudopanacis on Pseudopanax crassifolius, Phlyctema phoenicis on Phoenix canariensis, and Pseudoascochyta novae-zelandiae on Cordyline australis.Panama: Chalara panamensis from needle litter of Pinus cf. caribaea. South Africa: Exophiala eucalypti on leaves of Eucalyptus sp., Fantasmomyces hyalinus (incl. Fantasmomyces gen. nov.) on Acacia exuvialis, Paracladophialophora carceris (incl. Paracladophialophora gen. nov.) on Aloe sp., and Umthunziomyces hagahagensis (incl. Umthunziomyces gen. nov.) on Mimusops caffra.Spain: Clavaria griseobrunnea on bare ground in Pteridium aquilinum field, Cyathus ibericus on small fallen branches of Pinus halepensis, Gyroporus pseudolacteus in humus of Pinus pinaster, and Pseudoascochyta pratensis (incl. Pseudoascochyta gen. nov.) from soil. Thailand: Neoascochyta adenii on Adenium obesum, and Ochroconis capsici on Capsicum annuum. UK: Fusicolla melogrammae from dead stromata of Melogramma campylosporum on bark of Carpinus betulus. Uruguay: Myrmecridium pulvericola from house dust. USA: Neoscolecobasidium agapanthi (incl. Neoscolecobasidium gen. nov.) on Agapanthus sp., Polyscytalum purgamentum on leaf litter, Pseudopithomyces diversisporus from human toenail, Saksenaea trapezispora from knee wound of a soldier, and Sirococcus quercus from Quercus sp. Morphological and culture characteristics along with DNA barcodes are provided.
  9. Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, et al.
    World J Emerg Surg, 2017;12:35.
    PMID: 28785301 DOI: 10.1186/s13017-017-0147-0
    [This corrects the article DOI: 10.1186/s13017-016-0089-y.].
  10. Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Gené J, Guarro J, et al.
    Persoonia, 2018 Dec;40:240-393.
    PMID: 30505003 DOI: 10.3767/persoonia.2018.40.10
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoë banksiigena on Banksia marginata, Elsinoë elaeocarpi on Elaeocarpus sp., Elsinoë leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudoinconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand , Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.
  11. Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, et al.
    Persoonia, 2018 Dec;41:238-417.
    PMID: 30728607 DOI: 10.3767/persoonia.2018.41.12
    Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
  12. Bousquet J, Melén E, Haahtela T, Koppelman GH, Togias A, Valenta R, et al.
    Allergy, 2023 Feb 17.
    PMID: 36799120 DOI: 10.1111/all.15679
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of "one-airway-one-disease," coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the "Epithelial Barrier Hypothesis." This review determined that the "one-airway-one-disease" concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme "allergic" (asthma) phenotype combining asthma, rhinitis, and conjunctivitis. Rhinitis alone and rhinitis and asthma multimorbidity represent two distinct diseases with the following differences: (i) genomic and transcriptomic background (Toll-Like Receptors and IL-17 for rhinitis alone as a local disease; IL-33 and IL-5 for allergic and non-allergic multimorbidity as a systemic disease), (ii) allergen sensitization patterns (mono- or pauci-sensitization versus polysensitization), (iii) severity of symptoms, and (iv) treatment response. In conclusion, rhinitis alone (local disease) and rhinitis with asthma multimorbidity (systemic disease) should be considered as two distinct diseases, possibly modulated by the microbiome, and may be a model for understanding the epidemics of chronic and autoimmune diseases.
  13. Adachi I, Adye T, Ahmed H, Ahn JK, Aihara H, Akar S, et al.
    Phys Rev Lett, 2018 Dec 28;121(26):261801.
    PMID: 30636113 DOI: 10.1103/PhysRevLett.121.261801
    We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6}BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6}BB[over ¯] pairs recorded by the Belle detector. The results of the measurement are sin2β=0.80±0.14(stat)±0.06(syst)±0.03(model) and cos2β=0.91±0.22(stat)±0.09(syst)±0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is β=[22.5±4.4(stat)±1.2(syst)±0.6(model)]°. The measurement assumes no direct CP violation in B^{0}→D^{(*)}h^{0} decays. The quoted model uncertainties are due to the composition of the D^{0}→K_{S}^{0}π^{+}π^{-} decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e^{+}e^{-}→cc[over ¯] data sample. CP violation is observed in B^{0}→D^{(*)}h^{0} decays at the level of 5.1 standard deviations. The significance for cos2β>0 is 3.7 standard deviations. The trigonometric multifold solution π/2-β=(68.1±0.7)° is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
  14. Global Retinoblastoma Study Group, Fabian ID, Abdallah E, Abdullahi SU, Abdulqader RA, Adamou Boubacar S, et al.
    JAMA Oncol, 2020 May 01;6(5):685-695.
    PMID: 32105305 DOI: 10.1001/jamaoncol.2019.6716
    IMPORTANCE: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale.

    OBJECTIVES: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis.

    DESIGN, SETTING, AND PARTICIPANTS: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017.

    MAIN OUTCOMES AND MEASURES: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis.

    RESULTS: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]).

    CONCLUSIONS AND RELEVANCE: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs.

  15. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 13;114(6):061801.
    PMID: 25723204
    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8  TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7  fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2  cm, excluding masses below 790 GeV at 95% confidence level.
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 6;114(5):051801.
    PMID: 25699433
    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
  18. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
  19. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014 09 26;74(9):3036.
    PMID: 25814912
    Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and [Formula: see text], [Formula: see text], and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy [Formula: see text] with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 [Formula: see text]. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 [Formula: see text], and sleptons up to 260 [Formula: see text], depending on the model details.
  20. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Feb 19;116(7):071801.
    PMID: 26943527 DOI: 10.1103/PhysRevLett.116.071801
    A search for narrow resonances in proton-proton collisions at sqrt[s]=13  TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4  fb^{-1}. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W^{'} bosons below 2.6 TeV. These results significantly extend previously published limits.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links