Displaying publications 241 - 260 of 469 in total

Abstract:
Sort:
  1. Hariri A, Mohamad Noor N, Paiman NA, Ahmad Zaidi AM, Zainal Bakri SF
    Int J Occup Saf Ergon, 2018 Dec;24(4):646-651.
    PMID: 28849717 DOI: 10.1080/10803548.2017.1368950
    Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.
    Matched MeSH terms: Air Conditioning; Air Pollutants, Occupational/analysis
  2. Kouidhi W, Thannimalay L, Soon CS, Ali Mohd M
    Int J Occup Med Environ Health, 2017 Jul 14;30(5):743-750.
    PMID: 28584331 DOI: 10.13075/ijomeh.1896.00917
    OBJECTIVES: The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia.

    MATERIAL AND METHODS: Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis.

    RESULTS: Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p < 0.01).

    CONCLUSIONS: Our findings provide the first evidence that workers in a molding factory in Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750.

    Matched MeSH terms: Air Pollutants, Occupational/analysis*; Air Pollutants, Occupational/urine
  3. Azam M, Khan AQ, Bin Abdullah H, Qureshi ME
    Environ Sci Pollut Res Int, 2016 Apr;23(7):6376-89.
    PMID: 26620862 DOI: 10.1007/s11356-015-5817-4
    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/economics*
  4. Mohidem NA, Osman M, Hashim Z, Muharam FM, Mohd Elias S, Shaharudin R
    PLoS One, 2021;16(6):e0252146.
    PMID: 34138899 DOI: 10.1371/journal.pone.0252146
    Tuberculosis (TB) cases have increased drastically over the last two decades and it remains as one of the deadliest infectious diseases in Malaysia. This cross-sectional study aimed to establish the spatial distribution of TB cases and its association with the sociodemographic and environmental factors in the Gombak district. The sociodemographic data of 3325 TB cases such as age, gender, race, nationality, country of origin, educational level, employment status, health care worker status, income status, residency, and smoking status from 1st January 2013 to 31st December 2017 in Gombak district were collected from the MyTB web and Tuberculosis Information System (TBIS) database at the Gombak District Health Office and Rawang Health Clinic. Environmental data consisting of air pollution such as air quality index (AQI), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate matter 10 (PM10,) were obtained from the Department of Environment Malaysia from 1st July 2012 to 31st December 2017; whereas weather data such as rainfall were obtained from the Department of Irrigation and Drainage Malaysia and relative humidity, temperature, wind speed, and atmospheric pressure were obtained from the Malaysia Meteorological Department in the same period. Global Moran's I, kernel density estimation, Getis-Ord Gi* statistics, and heat maps were applied to identify the spatial pattern of TB cases. Ordinary least squares (OLS) and geographically weighted regression (GWR) models were used to determine the spatial association of sociodemographic and environmental factors with the TB cases. Spatial autocorrelation analysis indicated that the cases was clustered (p<0.05) over the five-year period and year 2016 and 2017 while random pattern (p>0.05) was observed from year 2013 to 2015. Kernel density estimation identified the high-density regions while Getis-Ord Gi* statistics observed hotspot locations, whereby consistently located in the southwestern part of the study area. This could be attributed to the overcrowding of inmates in the Sungai Buloh prison located there. Sociodemographic factors such as gender, nationality, employment status, health care worker status, income status, residency, and smoking status as well as; environmental factors such as AQI (lag 1), CO (lag 2), NO2 (lag 2), SO2 (lag 1), PM10 (lag 5), rainfall (lag 2), relative humidity (lag 4), temperature (lag 2), wind speed (lag 4), and atmospheric pressure (lag 6) were associated with TB cases (p<0.05). The GWR model based on the environmental factors i.e. GWR2 was the best model to determine the spatial distribution of TB cases based on the highest R2 value i.e. 0.98. The maps of estimated local coefficients in GWR models confirmed that the effects of sociodemographic and environmental factors on TB cases spatially varied. This study highlighted the importance of spatial analysis to identify areas with a high TB burden based on its associated factors, which further helps in improving targeted surveillance.
    Matched MeSH terms: Air Pollution/adverse effects; Air Pollution/analysis
  5. Al-Battawi S, Latif MT, How V, Thilakavathy K, Abd Hamid HH, Hameed S, et al.
    Environ Res, 2024 Nov 15;261:119744.
    PMID: 39098713 DOI: 10.1016/j.envres.2024.119744
    Ambient polycyclic aromatic hydrocarbons (PAHs) originate predominantly from fuel combustion of motor vehicles and have the potential to affect human health. However, there is insufficient knowledge regarding serum PAHs health risks among the Malaysian population. This study aims to compare PAH concentrations, distributions, correlations, and health risks in 202 blood serum samples drawn from residents living in high-traffic volume areas (Kuala Lumpur) and low-traffic volume areas (Hulu Langat) in Malaysia. Solid phase extraction and gas chromatography-mass spectrometry (GC-MS) were employed to extract and analyze blood serum samples. Questionnaires were distributed to obtain sociodemographic and contributing factors of serum PAHs. The mean total PAHs concentration in serum of the Kuala Lumpur group was 54.44 ng g-1 lipids, double the Hulu Langat group's concentration (25.7 ng g-1 lipids). Indeno(1,2,3-cd)pyrene (IcP) and acenaphthene (ACP) feature the most and least abundant compounds in both study groups. The mean concentrations of IcP and ACP in the Kuala Lumpur and Hulu Langat groups were 26.8 vs 12.68 and 0.27 vs 0.14 ng g-1 lipids, respectively. High-molecular-weight PAHs (HMW-PAHs) composed 85% of serum total PAHs in both groups. Significant correlations were found (i) between the individual serum PAH congeners (p 
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/blood
  6. Chin YSJ, De Pretto L, Thuppil V, Ashfold MJ
    PLoS One, 2019;14(3):e0212206.
    PMID: 30870439 DOI: 10.1371/journal.pone.0212206
    As in many nations, air pollution linked to rapid industrialization is a public health and environmental concern in Malaysia, especially in cities. Understanding awareness of air pollution and support for environmental protection from the general public is essential for informing governmental approaches to dealing with this problem. This study presents a cross-sectional survey conducted in the Klang Valley and Iskandar conurbations to examine urban Malaysians' perception, awareness and opinions of air pollution. The survey was conducted in two languages, English and Malay, and administered through the online survey research software, Qualtrics. The survey consisted of three sections, where we collected sociodemographic information, information on the public perception of air quality and the causes of air pollution, information on public awareness of air pollution and its related impacts, and information on attitudes towards environmental protection. Of 214 respondents, over 60% were positive towards the air quality at both study sites despite the presence of harmful levels of air pollution. The air in the Klang Valley was perceived to be slightly more polluted and causing greater health issues. Overall, the majority of respondents were aware that motor vehicles represent the primary pollution source, yet private transport was still the preferred choice of transportation mode. A generally positive approach towards environmental protection emerged from the data. However, participants showed stronger agreement with protection actions that do not involve individual effort. Nonetheless, we found that certain segments of the sample (people owning more than three vehicles per household and those with relatives who suffered from respiratory diseases) were significantly more willing to personally pay for environmental protection compared to others. Implications point to the need for actions for spreading awareness of air pollution to the overall population, especially with regards to its health risks, as well as strategies for increasing the perception of behavioural control, especially with regards to motor vehicles' usage.
    Matched MeSH terms: Air Pollutants/analysis; Air Pollution/analysis; Air Pollution/prevention & control*
  7. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/pharmacokinetics; Air Pollution, Indoor/analysis*
  8. Tajudin MABA, Khan MF, Mahiyuddin WRW, Hod R, Latif MT, Hamid AH, et al.
    Ecotoxicol Environ Saf, 2019 Apr 30;171:290-300.
    PMID: 30612017 DOI: 10.1016/j.ecoenv.2018.12.057
    Rapid urbanisation in Malaysian cities poses risks to the health of residents. This study aims to estimate the relative risk (RR) of major air pollutants on cardiovascular and respiratory hospitalisations in Kuala Lumpur. Daily hospitalisations due to cardiovascular and respiratory diseases from 2010 to 2014 were obtained from the Hospital Canselor Tuanku Muhriz (HCTM). The trace gases, PM10 and weather variables were obtained from the Department of Environment (DOE) Malaysia in consistent with the hospitalisation data. The RR was estimated using a Generalised Additive Model (GAM) based on Poisson regression. A "lag" concept was used where the analysis was segregated into risks of immediate exposure (lag 0) until exposure after 5 days (lag 5). The results showed that the gases could pose significant risks towards cardiovascular and respiratory hospitalisations. However, the RR value of PM10 was not significant in this study. Immediate effects on cardiovascular hospitalisations were observed for NO2 and O3 but no immediate effect was found on respiratory hospitalisations. Delayed effects on cardiovascular and respiratory hospitalisations were found with SO2 and NO2. The highest RR value was observed at lag 4 for respiratory admissions with SO2 (RR = 1.123, 95% CI = 1.045-1.207), followed by NO2 at lag 5 for cardiovascular admissions (RR = 1.025, 95% CI = 1.005-1.046). For the multi-pollutant model, NO2 at lag 5 showed the highest risks towards cardiovascular hospitalisations after controlling for O3 8 h mean lag 1 (RR = 1.026, 95% CI = 1.006-1.047), while SO2 at lag 4 showed highest risks towards respiratory hospitalisations after controlling for NO2 lag 3 (RR = 1.132, 95% CI = 1.053-1.216). This study indicated that exposure to trace gases in Kuala Lumpur could lead to both immediate and delayed effects on cardiovascular and respiratory hospitalisations.
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/toxicity*; Air Pollution/adverse effects*; Air Pollution/analysis
  9. Seak CJ, Ng CJ, Yen DH, Wong YC, Hsu KH, Seak JC, et al.
    Am J Emerg Med, 2014 Dec;32(12):1481-4.
    PMID: 25308825 DOI: 10.1016/j.ajem.2014.09.011
    This study aims to evaluate the performance of Simplified Acute Physiology Score II (SAPS II), the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and the Sequential Organ Failure Assessment (SOFA) score for predicting illness severity and the mortality of adult hepatic portal venous gas (HPVG) patients presenting to the emergency department (ED). This will assist emergency physicians in risk stratification.
    Matched MeSH terms: Embolism, Air/diagnosis*; Embolism, Air/mortality
  10. Rozali A, Sulaiman A, Zin BM, Khairuddin H, Abd-Halim M, Mohd Sidik S
    Med J Malaysia, 2006 Oct;61(4):496-8.
    PMID: 17243532 MyJurnal
    Pulmonary overinflation syndrome (POIS) is a group of barotrauma-related diseases caused by the expansion of gas trapped in the lung, or over-pressurization of the lung with subsequent over-expansion and rupture of the alveolar air sacs. This group of disorders includes arterial gas embolism, tension pneumothorax, mediastinal emphysema, subcutaneous emphysema and rarely pneumopericardium. In the case of diving activities, POIS is rarely reported and is frequently related to unsafe diving techniques. We report a classical case of POIS in an underwater logger while cutting trees for logs in Tasik Kenyir, Terengganu. The patient, a 24-year-old worker, made a rapid free ascent to the surface after his breathing equipment malfunctioned while he was working underwater. He suffered from bilateral tension pneumothoraces, arterial gas embolism giving rise to multiple cerebral and cerebellar infarcts, mediastinal and subcutaneous emphysema as well as pneumopericardium. He was treated in a recompression chamber with hyperbaric oxygen therapy and discharged with residual weakness in his right leg.
    Matched MeSH terms: Embolism, Air/diagnosis; Embolism, Air/etiology*
  11. Lim FL, Hashim Z, Md Said S, Than LT, Hashim JH, Norbäck D
    Sci Total Environ, 2015 Dec 1;536:353-61.
    PMID: 26225741 DOI: 10.1016/j.scitotenv.2015.06.137
    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen.
    Matched MeSH terms: Air Pollution, Indoor/analysis*; Air Pollution, Indoor/statistics & numerical data
  12. Rene ER, Kar S, Krishnan J, Pakshirajan K, López ME, Murthy DV, et al.
    Bioresour Technol, 2015 Aug;190:529-35.
    PMID: 25827361 DOI: 10.1016/j.biortech.2015.03.049
    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects.
    Matched MeSH terms: Air Pollutants/isolation & purification*; Air Pollutants/chemistry
  13. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollutants/toxicity
  14. Shahadin MS, Ab Mutalib NS, Latif MT, Greene CM, Hassan T
    Lung Cancer, 2018 04;118:69-75.
    PMID: 29572006 DOI: 10.1016/j.lungcan.2018.01.016
    Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field.
    Matched MeSH terms: Air Pollutants/adverse effects*; Air Pollution
  15. Norbäck D, Hashim JH, Hashim Z, Jalaludin J, Ismail R, Wieslander G, et al.
    J Asthma, 2024 Dec;61(12):1772-1780.
    PMID: 39066997 DOI: 10.1080/02770903.2024.2383627
    OBJECTIVE: To study associations between fractional exhaled nitric oxide (FeNO) and asthma, airway symptoms, sensitization to common allergens, outdoor pollution and home environment among 380 students in eight junior high schools in two areas in Indonesia.

    METHODS: Data on health and home were collected by a face-to face interview before measuring FeNO and performing skin prick test against common allergens. Exploratory linear mixed and logistic regression models were employed.

    RESULTS: Geometric mean of FeNO was 17.8 ppb (GSD 2.09) and 139 students (36.6%) had elevated FeNO (>20 ppb). In total, 107 students (28.2%) were sensitized to house dust mite (HDM) (Der p1 or Der f1), 4 (1.1%) to cat and 3 (0.8%) to mold (Cladosporium or Alternaria). Moreover, 20 students (5.3%) had diagnosed asthma, 38 (10.0%) had current wheeze, and 107 (28.2%) had current rhinitis. HDM sensitization, diagnosed asthma, current wheeze, and current rhinitis were associated with FeNO. In total, 281 students (73.9%) had mold or dampness, 232 (61.1%) had environmental tobacco smoke (ETS) and 43 (11.3%) had other odor at home. Indoor mold or dampness and other odor at home were associated with FeNO. ETS was negatively associated with FeNO.

    CONCLUSION: HDM sensitization and elevated FeNO can be common among children in this part of Indonesia. The high prevalence of elevated FeNO indicate that undiagnosed childhood asthma is common. Dampness, mold and odor at home can be associated with increased FeNO while ETS can be associated with decreased FeNO.

    Matched MeSH terms: Air Pollution, Indoor/adverse effects; Air Pollution, Indoor/analysis
  16. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, et al.
    Environ Int, 2017 11;108:127-136.
    PMID: 28843141 DOI: 10.1016/j.envint.2017.08.006
    Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/pharmacology*
  17. Hashim JH, Hashim Z, Omar A, Shamsudin SB
    Asia Pac J Public Health, 2000;12(2):65-70.
    PMID: 11836921
    The objective of this article is to study the influence of exposure and socio-economic variables on the blood lead level of Malaysian school children. Data on respirable lead and blood lead of 346 school children were obtained from Kuala Lumpur (urban), Kemaman (semi-urban) and Setiu (rural). Respirable lead and blood lead were highest for Kuala Lumpur (95 ng/m3 and 5.26 micrograms/dL) followed by Kemaman (27 ng/m3 and 2.81 micrograms/dL) and Setiu (15 ng/m3 and 2.49 micrograms/dL), and the differences were statistically significant. The percentage of school children with excessive blood lead of 10 micrograms/dL or greater was 6.36% overall, and highest for Kuala Lumpur (11.73%). Regression analyses show that urban children are at higher risk of exhibiting excessive blood lead levels. Kuala Lumpur's school children have a 25 times greater risk of having excessive blood lead levels when compared to Kemaman's and Setiu's school children. Respirable and blood lead were correlated (r = 0.999, p = 0.021). Urban school children acquire higher blood lead levels than their rural and semi-urban counterparts, even after controlling for age, sex, parents' education and income levels. In conclusion, it is time that lead in the Malaysian environment and population be monitored closely, especially its temporal and spatial variability. Only then can a comprehensive preventive strategy be implemented.
    Matched MeSH terms: Air Pollutants/adverse effects; Air Pollutants/blood*
  18. Doroodgar F, Abdur Razzaque M, Isnin IF
    Sensors (Basel), 2014;14(3):5004-40.
    PMID: 24618781 DOI: 10.3390/s140305004
    Over-the-air dissemination of code updates in wireless sensor networks have been researchers' point of interest in the last few years, and, more importantly, security challenges toward the remote propagation of code updating have occupied the majority of efforts in this context. Many security models have been proposed to establish a balance between the energy consumption and security strength, having their concentration on the constrained nature of wireless sensor network (WSN) nodes. For authentication purposes, most of them have used a Merkle hash tree to avoid using multiple public cryptography operations. These models mostly have assumed an environment in which security has to be at a standard level. Therefore, they have not investigated the tree structure for mission-critical situations in which security has to be at the maximum possible level (e.g., military applications, healthcare). Considering this, we investigate existing security models used in over-the-air dissemination of code updates for possible vulnerabilities, and then, we provide a set of countermeasures, correspondingly named Security Model Requirements. Based on the investigation, we concentrate on Seluge, one of the existing over-the-air programming schemes, and we propose an improved version of it, named Seluge++, which complies with the Security Model Requirements and replaces the use of the inefficient Merkle tree with a novel method. Analytical and simulation results show the improvements in Seluge++ compared to Seluge.
    Matched MeSH terms: Air
  19. Yew KL, Razali F
    Int J Cardiol, 2015 Jun 1;188:56-7.
    PMID: 25885752 DOI: 10.1016/j.ijcard.2015.04.040
    Matched MeSH terms: Embolism, Air/etiology; Embolism, Air/radiography*; Embolism, Air/therapy*
  20. Lee CT
    Aviat Space Environ Med, 1999 Jul;70(7):698-700.
    PMID: 10417007
    Two cases of cerebral arterial gas embolism (CAGE) occurred after a decompression incident involving five maintenance crew during a cabin leakage system test of a Hercules C-130 aircraft. During the incident, the cabin pressure increased to 8 in Hg (203.2 mm Hg, 27 kPa) above atmospheric pressure causing intense pain in the ears of all the crew inside. The system was rapidly depressurized to ground level. After the incident, one of the crew reported chest discomfort and fatigue. The next morning, he developed a sensation of numbness in the left hand, with persistence of the earlier symptoms. A second crewmember, who only experienced earache and heaviness in the head after the incident, developed retrosternal chest discomfort, restlessness, fatigue and numbness in his left hand the next morning. Both were subsequently referred to a recompression facility 4 d after the incident. Examination by the Diving Medical Officer on duty recorded left-sided hemianesthesia and Grade II middle ear barotrauma as the only abnormalities in both cases. Chest X-rays did not reveal any extra-alveolar gas. Diagnoses of Static Neurological Decompression Illness were made and both patients recompressed on a RN 62 table. The first case recovered fully after two treatments, and the second case after one treatment. Magnetic resonance imaging (MRI) of the brain and bubble contrast echocardiography performed on the first case 6 mo after the incident were reported to be normal. The second case was lost to follow-up. Decompression illness (DCI) generally occurs in occupational groups such as compressed air workers, divers, aviators, and astronauts. This is believed to be the first report of DCI occurring among aircraft's ground maintenance crew.
    Matched MeSH terms: Embolism, Air/diagnosis; Embolism, Air/etiology*; Embolism, Air/therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links